- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1105-1132.
Published online: 2020-07
Cited by
- BibTex
- RIS
- TXT
The goal of this paper is to develop numerical methods computing a few smallest elastic interior transmission eigenvalues, which are of practical importance in inverse elastic scattering theory. The problem is challenging since it is nonlinear, non-self-adjoint, and of fourth order. In this paper, we construct a lowest-order mixed finite element method which is close to the Ciarlet-Raviart mixed finite element method. The scheme is based on Lagrange finite element and is one of the less expensive methods in terms of the amount of degrees of freedom. Due to the non-self-adjointness, the discretization of elastic transmission eigenvalue problem leads to a non-classical mixed problem which does not fit into the framework of classical theoretical analysis. Instead, we obtain the convergence analysis based on the spectral approximation theory of compact operator. Numerical examples are presented to verify the theory. Both real and complex eigenvalues can be obtained.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0106}, url = {http://global-sci.org/intro/article_detail/cicp/17677.html} }The goal of this paper is to develop numerical methods computing a few smallest elastic interior transmission eigenvalues, which are of practical importance in inverse elastic scattering theory. The problem is challenging since it is nonlinear, non-self-adjoint, and of fourth order. In this paper, we construct a lowest-order mixed finite element method which is close to the Ciarlet-Raviart mixed finite element method. The scheme is based on Lagrange finite element and is one of the less expensive methods in terms of the amount of degrees of freedom. Due to the non-self-adjointness, the discretization of elastic transmission eigenvalue problem leads to a non-classical mixed problem which does not fit into the framework of classical theoretical analysis. Instead, we obtain the convergence analysis based on the spectral approximation theory of compact operator. Numerical examples are presented to verify the theory. Both real and complex eigenvalues can be obtained.