- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 803-826.
Published online: 2020-06
Cited by
- BibTex
- RIS
- TXT
We prove the super-closeness between the finite element solution and the Ritz projection for some second order and fourth order elliptic equations in both the $H^1$ and the $L^2$ norms. For the fourth order problem, a Ciarlet-Raviart type mixed formulation is used in the analysis. The main tool in the proof is a negative norm estimate of the Ritz projection, which requires $H^{q+1}$ regularity for second order elliptic equations. Therefore, the analysis is done on a domain Ω with smooth boundary, and hence we only consider the pure Neumann boundary problems which can be discretized naturally on such domains, if ignoring the effect of numerical integrals. For the fourth order problem, our results amend the gap between the theoretical estimates and the numerical examples in a previous work [22].
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0154}, url = {http://global-sci.org/intro/article_detail/cicp/16954.html} }We prove the super-closeness between the finite element solution and the Ritz projection for some second order and fourth order elliptic equations in both the $H^1$ and the $L^2$ norms. For the fourth order problem, a Ciarlet-Raviart type mixed formulation is used in the analysis. The main tool in the proof is a negative norm estimate of the Ritz projection, which requires $H^{q+1}$ regularity for second order elliptic equations. Therefore, the analysis is done on a domain Ω with smooth boundary, and hence we only consider the pure Neumann boundary problems which can be discretized naturally on such domains, if ignoring the effect of numerical integrals. For the fourth order problem, our results amend the gap between the theoretical estimates and the numerical examples in a previous work [22].