- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 768-802.
Published online: 2020-06
Cited by
- BibTex
- RIS
- TXT
In a general polygonal domain, possibly nonconvex and multi-connected (with holes), the time-dependent Ginzburg–Landau equation is reformulated into a new system of equations. The magnetic field $B$:=∇×A is introduced as an unknown solution in the new system, while the magnetic potential A is solved implicitly through its Hodge decomposition into divergence-free part, curl-free and harmonic parts, separately. Global well-posedness of the new system and its equivalence to the original problem are proved. A linearized and decoupled Galerkin finite element method is proposed for solving the new system. The convergence of numerical solutions is proved based on a compactness argument by utilizing the maximal $L^p$-regularity of the discretized equations. Compared with the Hodge decomposition method proposed in [27], the new method has the advantage of approximating the magnetic field B directly and converging for initial conditions that are incompatible with the external magnetic field. Several numerical examples are provided to illustrate the efficiency of the proposed numerical method in both simply connected and multi-connected nonsmooth domains. We observe that even in simply connected domains, the new method is superior to the method in [27] for approximating the magnetic field.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0117}, url = {http://global-sci.org/intro/article_detail/cicp/16953.html} }In a general polygonal domain, possibly nonconvex and multi-connected (with holes), the time-dependent Ginzburg–Landau equation is reformulated into a new system of equations. The magnetic field $B$:=∇×A is introduced as an unknown solution in the new system, while the magnetic potential A is solved implicitly through its Hodge decomposition into divergence-free part, curl-free and harmonic parts, separately. Global well-posedness of the new system and its equivalence to the original problem are proved. A linearized and decoupled Galerkin finite element method is proposed for solving the new system. The convergence of numerical solutions is proved based on a compactness argument by utilizing the maximal $L^p$-regularity of the discretized equations. Compared with the Hodge decomposition method proposed in [27], the new method has the advantage of approximating the magnetic field B directly and converging for initial conditions that are incompatible with the external magnetic field. Several numerical examples are provided to illustrate the efficiency of the proposed numerical method in both simply connected and multi-connected nonsmooth domains. We observe that even in simply connected domains, the new method is superior to the method in [27] for approximating the magnetic field.