- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 498-517.
Published online: 2020-05
Cited by
- BibTex
- RIS
- TXT
This study is aimed at improving multiple adaptive subtraction. We propose a modified pseudomulti-channel matching method based on the Huber norm, to adjust the matching differences on frequency and phase between the predicted multiples and original data. The second-order derivative of the predicted multiples is utilized to replace the derivative of its Hilbert transform. Due to the additional frequency term, this method can enhance the high-frequency component. We introduce 180〫 phase rotation of the multiple channels, which can decrease phase differences. The Huber norm interpolates between smooth L2 norm treatment of small residuals and robust L1 norm treatment of large residuals. This method can eliminate the restriction of large value conditions from the L2 norm and weaken the condition of orthogonality from the L1 norm. The applications of the Pluto and Delft models shows that compared with pseudomulti-channel matching filter, the main frequency is increased from 36 Hz to 38 Hz, and the primary reflection wave is more concentrated. The practical application of field data verifies the effectiveness of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0123}, url = {http://global-sci.org/intro/article_detail/cicp/16848.html} }This study is aimed at improving multiple adaptive subtraction. We propose a modified pseudomulti-channel matching method based on the Huber norm, to adjust the matching differences on frequency and phase between the predicted multiples and original data. The second-order derivative of the predicted multiples is utilized to replace the derivative of its Hilbert transform. Due to the additional frequency term, this method can enhance the high-frequency component. We introduce 180〫 phase rotation of the multiple channels, which can decrease phase differences. The Huber norm interpolates between smooth L2 norm treatment of small residuals and robust L1 norm treatment of large residuals. This method can eliminate the restriction of large value conditions from the L2 norm and weaken the condition of orthogonality from the L1 norm. The applications of the Pluto and Delft models shows that compared with pseudomulti-channel matching filter, the main frequency is increased from 36 Hz to 38 Hz, and the primary reflection wave is more concentrated. The practical application of field data verifies the effectiveness of the proposed method.