- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 249-275.
Published online: 2020-05
Cited by
- BibTex
- RIS
- TXT
Full waveform inversion of time-lapse seismic data can be used as a means of estimating the reservoir changes due to the production. Since the repeated computations for the monitor surveys lead to a large computational cost, time-lapse full waveform inversion is still considered to be a challenging task. To address this problem, we present an efficient target-oriented inversion scheme for time-lapse seismic data using an integral equation formulation with Gaussian beam based Green's function approach. The proposed time-lapse approach allows one to perform a local inversion within a small region of interest (e.g. a reservoir under production) for the monitor survey. We have verified that the T-matrix approach is indeed naturally target-oriented, which was mentioned by Jakobsen and Ursin [24] and allows one to reduce the computational cost of time-lapse inversion by focusing the inversion on the target-area only. This method is based on a new version of the distorted Born iterative T-matrix inverse scattering method. The Gaussian beam and T-matrix are used in this approach to perform the wavefield computation for the time-lapse inversion in the baseline model from the survey surface to the target region. We have provided target-oriented inversion results of the synthetic time-lapse waveform data, which shows that the proposed scheme reduces the computational cost significantly.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0143}, url = {http://global-sci.org/intro/article_detail/cicp/16836.html} }Full waveform inversion of time-lapse seismic data can be used as a means of estimating the reservoir changes due to the production. Since the repeated computations for the monitor surveys lead to a large computational cost, time-lapse full waveform inversion is still considered to be a challenging task. To address this problem, we present an efficient target-oriented inversion scheme for time-lapse seismic data using an integral equation formulation with Gaussian beam based Green's function approach. The proposed time-lapse approach allows one to perform a local inversion within a small region of interest (e.g. a reservoir under production) for the monitor survey. We have verified that the T-matrix approach is indeed naturally target-oriented, which was mentioned by Jakobsen and Ursin [24] and allows one to reduce the computational cost of time-lapse inversion by focusing the inversion on the target-area only. This method is based on a new version of the distorted Born iterative T-matrix inverse scattering method. The Gaussian beam and T-matrix are used in this approach to perform the wavefield computation for the time-lapse inversion in the baseline model from the survey surface to the target region. We have provided target-oriented inversion results of the synthetic time-lapse waveform data, which shows that the proposed scheme reduces the computational cost significantly.