- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1053-1075.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
In this paper, a decoupling numerical method for solving Cahn-Hilliard-Hele-Shaw system with logarithmic potential is proposed. Combing with a convex-splitting of the energy functional, the discretization of the Cahn-Hilliard equation in time is presented. The nonlinear term in Cahn-Hilliard equation is decoupled from the pressure gradient by using a fractional step method. Therefore, to update the pressure, we just need to solve a Possion equation at each time step by using an incremental pressure-correction technique for the pressure gradient in Darcy equation. For logarithmic potential, we use the regularization procedure, which make the domain for the regularized functional $F$($ф$) is extended from (−1,1) to (−∞,∞). Further, the stability and the error estimate of the proposed method are proved. Finally, a series of numerical experiments are implemented to illustrate the theoretical analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0034}, url = {http://global-sci.org/intro/article_detail/cicp/14826.html} }In this paper, a decoupling numerical method for solving Cahn-Hilliard-Hele-Shaw system with logarithmic potential is proposed. Combing with a convex-splitting of the energy functional, the discretization of the Cahn-Hilliard equation in time is presented. The nonlinear term in Cahn-Hilliard equation is decoupled from the pressure gradient by using a fractional step method. Therefore, to update the pressure, we just need to solve a Possion equation at each time step by using an incremental pressure-correction technique for the pressure gradient in Darcy equation. For logarithmic potential, we use the regularization procedure, which make the domain for the regularized functional $F$($ф$) is extended from (−1,1) to (−∞,∞). Further, the stability and the error estimate of the proposed method are proved. Finally, a series of numerical experiments are implemented to illustrate the theoretical analysis.