- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1014-1031.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
We investigate a multirate time step approach applied to decoupled methods in fluid and structure interaction (FSI) computation, where two different time steps are employed for fluid and structure respectively. For illustration, the multirate technique is examined by applying the decoupled $β$ scheme. Numerical experiments show that the proposed approach is stable and retains the same order of accuracy as the original single time step scheme, while with much less computational expense.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0305}, url = {http://global-sci.org/intro/article_detail/cicp/14824.html} }We investigate a multirate time step approach applied to decoupled methods in fluid and structure interaction (FSI) computation, where two different time steps are employed for fluid and structure respectively. For illustration, the multirate technique is examined by applying the decoupled $β$ scheme. Numerical experiments show that the proposed approach is stable and retains the same order of accuracy as the original single time step scheme, while with much less computational expense.