- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 949-975.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce a new type of troubled-cell indicator to improve hybrid weighted essentially non-oscillatory (WENO) schemes for solving the hyperbolic conservation laws. The hybrid WENO schemes selectively adopt the high-order linear upwind scheme or the WENO scheme to avoid the local characteristic decompositions and calculations of the nonlinear weights in smooth regions. Therefore, they can reduce computational cost while maintaining non-oscillatory properties in non-smooth regions. Reliable troubled-cell indicators are essential for efficient hybrid WENO methods. Most of troubled-cell indicators require proper parameters to detect discontinuities precisely, but it is very difficult to determine the parameters automatically. We develop a new troubled-cell indicator derived from the mean value theorem that does not require any variable parameters. Additionally, we investigate the characteristics of indicator variable; one of the conserved properties or the entropy is considered as indicator variable. Detailed numerical tests for 1D and 2D Euler equations are conducted to demonstrate the performance of the proposed indicator. The results with the proposed troubled-cell indicator are in good agreement with pure WENO schemes. Also the new indicator has advantages in the computational cost compared with the other indicators.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0059}, url = {http://global-sci.org/intro/article_detail/cicp/14822.html} }In this paper, we introduce a new type of troubled-cell indicator to improve hybrid weighted essentially non-oscillatory (WENO) schemes for solving the hyperbolic conservation laws. The hybrid WENO schemes selectively adopt the high-order linear upwind scheme or the WENO scheme to avoid the local characteristic decompositions and calculations of the nonlinear weights in smooth regions. Therefore, they can reduce computational cost while maintaining non-oscillatory properties in non-smooth regions. Reliable troubled-cell indicators are essential for efficient hybrid WENO methods. Most of troubled-cell indicators require proper parameters to detect discontinuities precisely, but it is very difficult to determine the parameters automatically. We develop a new troubled-cell indicator derived from the mean value theorem that does not require any variable parameters. Additionally, we investigate the characteristics of indicator variable; one of the conserved properties or the entropy is considered as indicator variable. Detailed numerical tests for 1D and 2D Euler equations are conducted to demonstrate the performance of the proposed indicator. The results with the proposed troubled-cell indicator are in good agreement with pure WENO schemes. Also the new indicator has advantages in the computational cost compared with the other indicators.