- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 897-920.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
In this paper, a new type of third-order and fourth-order weighted essentially non-oscillatory (WENO) schemes is designed for simulating the Hamilton-Jacobi equations on triangular meshes. We design such schemes with the use of the nodal information defined on five unequal-sized spatial stencils, the application of monotone Hamiltonians as a building block, the artificial set of positive linear weights to make up high-order approximations in smooth regions simultaneously avoiding spurious oscillations nearby discontinuities of the derivatives of the solutions. The spatial reconstructions are convex combinations of the derivatives of a modified cubic/quartic polynomial defined on a big spatial stencil and four quadratic polynomials defined on small spatial stencils, and a third-order TVD Runge-Kutta method is used for the time discretization. The main advantages of these WENO schemes are their efficiency, simplicity, and can be easily implemented to higher dimensional unstructured meshes. Extensive numerical tests are performed to illustrate the good performance of such new WENO schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0156}, url = {http://global-sci.org/intro/article_detail/cicp/13921.html} }In this paper, a new type of third-order and fourth-order weighted essentially non-oscillatory (WENO) schemes is designed for simulating the Hamilton-Jacobi equations on triangular meshes. We design such schemes with the use of the nodal information defined on five unequal-sized spatial stencils, the application of monotone Hamiltonians as a building block, the artificial set of positive linear weights to make up high-order approximations in smooth regions simultaneously avoiding spurious oscillations nearby discontinuities of the derivatives of the solutions. The spatial reconstructions are convex combinations of the derivatives of a modified cubic/quartic polynomial defined on a big spatial stencil and four quadratic polynomials defined on small spatial stencils, and a third-order TVD Runge-Kutta method is used for the time discretization. The main advantages of these WENO schemes are their efficiency, simplicity, and can be easily implemented to higher dimensional unstructured meshes. Extensive numerical tests are performed to illustrate the good performance of such new WENO schemes.