- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 285-302.
Published online: 2019-10
Cited by
- BibTex
- RIS
- TXT
The lobe dynamics and mass transport between separation bubble and main flow in flow over airfoil are studied in detail, using Lagrangian coherent structures (LCSs), in order to understand the nature of evolution of the separation bubble. For this problem, the transient flow over NACA0012 airfoil with low Reynolds number is simulated numerically by characteristic based split (CBS) scheme, in combination with dual time stepping. Then, LCSs and lobe dynamics are introduced and developed to investigate the mass transport between separation bubble and main flow, from viewpoint of nonlinear dynamics. The results show that stable manifolds and unstable manifolds could be tangled with each other as time evolution, and the lobes are formed periodically to induce mass transport between main flow and separation bubble, with dynamic behaviors. Moreover, the evolution of the separation bubble depends essentially on the mass transport which is induced by lobes, ensuing energy and momentum transfers. As the results, it can be drawn that the dynamics of flow separation could be studied using LCSs and lobe dynamics, and could be controlled feasibly if an appropriate control is applied to the upstream boundary layer with high momentum.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0127}, url = {http://global-sci.org/intro/article_detail/cicp/13356.html} }The lobe dynamics and mass transport between separation bubble and main flow in flow over airfoil are studied in detail, using Lagrangian coherent structures (LCSs), in order to understand the nature of evolution of the separation bubble. For this problem, the transient flow over NACA0012 airfoil with low Reynolds number is simulated numerically by characteristic based split (CBS) scheme, in combination with dual time stepping. Then, LCSs and lobe dynamics are introduced and developed to investigate the mass transport between separation bubble and main flow, from viewpoint of nonlinear dynamics. The results show that stable manifolds and unstable manifolds could be tangled with each other as time evolution, and the lobes are formed periodically to induce mass transport between main flow and separation bubble, with dynamic behaviors. Moreover, the evolution of the separation bubble depends essentially on the mass transport which is induced by lobes, ensuing energy and momentum transfers. As the results, it can be drawn that the dynamics of flow separation could be studied using LCSs and lobe dynamics, and could be controlled feasibly if an appropriate control is applied to the upstream boundary layer with high momentum.