- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 167-197.
Published online: 2019-10
Cited by
- BibTex
- RIS
- TXT
Stress boundary conditions for the lattice Boltzmann equation that are consistent to Burnett order are proposed and imposed using a moment-based method. The accuracy of the method with complicated spatially-dependent boundary conditions for stress and velocity is investigated using the regularized lid-driven cavity flow. The complete set of boundary conditions, which involve gradients evaluated at the boundaries, are implemented locally. A recently-derived collision operator with modified equilibria and velocity-dependent collision rates to reduce the defect in Galilean invariance is also investigated. Numerical results are in excellent agreement with existing benchmark data and exhibit second-order convergence. The lattice Boltzmann stress field is studied and shown to depart significantly from the Newtonian viscous stress when the ratio of Mach to Reynolds numbers is not negligibly small.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0229}, url = {http://global-sci.org/intro/article_detail/cicp/13318.html} }Stress boundary conditions for the lattice Boltzmann equation that are consistent to Burnett order are proposed and imposed using a moment-based method. The accuracy of the method with complicated spatially-dependent boundary conditions for stress and velocity is investigated using the regularized lid-driven cavity flow. The complete set of boundary conditions, which involve gradients evaluated at the boundaries, are implemented locally. A recently-derived collision operator with modified equilibria and velocity-dependent collision rates to reduce the defect in Galilean invariance is also investigated. Numerical results are in excellent agreement with existing benchmark data and exhibit second-order convergence. The lattice Boltzmann stress field is studied and shown to depart significantly from the Newtonian viscous stress when the ratio of Mach to Reynolds numbers is not negligibly small.