- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1098-1117.
Published online: 2019-07
Cited by
- BibTex
- RIS
- TXT
In this paper, a mass conservative lattice Boltzmann model (LBM) is proposed to simulate the two-phase flows with moving contact lines at high density ratio. The proposed model consists of a phase field lattice Boltzmann equation (LBE) for solving the conservative Allen-Cahn (A-C) equation, and a pressure evolution LBE for solving the incompressible Navier-Stokes equations. In addition, a modified wall boundary treatment scheme is developed to ensure the mass conservation. The wetting dynamics are treated by incorporating the cubic wall energy in the expression of the total free energy. The current model is characterized by mass conservation, proper treatment of wetting boundary and high density ratio. We applied the model on a series of numerical tests including equilibrium droplets on wetting surfaces, co-current flow and a droplet moving by gravity along inclined wetting surfaces. Theoretical analysis and experiments were conducted for model validation. The numerical results show good performances on mass conservation even with a density contrast up to 1000. Furthermore, the results show that the moving contact line can be successfully recovered, which proves that this model is applicable on the study of moving contact line issue and further related applications.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0061}, url = {http://global-sci.org/intro/article_detail/cicp/13230.html} }In this paper, a mass conservative lattice Boltzmann model (LBM) is proposed to simulate the two-phase flows with moving contact lines at high density ratio. The proposed model consists of a phase field lattice Boltzmann equation (LBE) for solving the conservative Allen-Cahn (A-C) equation, and a pressure evolution LBE for solving the incompressible Navier-Stokes equations. In addition, a modified wall boundary treatment scheme is developed to ensure the mass conservation. The wetting dynamics are treated by incorporating the cubic wall energy in the expression of the total free energy. The current model is characterized by mass conservation, proper treatment of wetting boundary and high density ratio. We applied the model on a series of numerical tests including equilibrium droplets on wetting surfaces, co-current flow and a droplet moving by gravity along inclined wetting surfaces. Theoretical analysis and experiments were conducted for model validation. The numerical results show good performances on mass conservation even with a density contrast up to 1000. Furthermore, the results show that the moving contact line can be successfully recovered, which proves that this model is applicable on the study of moving contact line issue and further related applications.