- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 973-1007.
Published online: 2019-07
Cited by
- BibTex
- RIS
- TXT
With the observation that the TENO weighting strategy can explicitly distinguish smooth scales from nonsmooth scales in spectral space, in this paper, a new discontinuity indicator is proposed based on the high-order TENO paradigm [Fu et al., JCP 305(2016): 333-359]. The local flow structures are classified as smooth or nonsmooth scales, and the hybrid numerical discretization scheme is applied correspondingly, i.e. the high-order upwind linear scheme without characteristic decomposition is employed for resolving smooth scales while the nonlinear low-dissipation TENO scheme is adopted to capture discontinuities. Since the time-consuming characteristic decomposition and smoothness-indicator computation of TENO are avoided in smooth regions, the overall computational efficiency can be improved significantly. Moreover, the cut-off wavenumber separating smooth and nonsmooth scales is determined by the parameter CT. In contrast to the thresholds of other discontinuity indicators, which are typically defined in physical space, CT takes effects in wavespace rendering its high generality. A set of benchmark cases with widespread length-scales is simulated to assess the performance of the proposed discontinuity indicator and the resulting hybrid shock-capturing scheme. Compared to the monotonicity-preserving discontinuity indicator and the TVB discontinuity indicator, the proposed algorithm delivers better performance with a fixed set of parameters for all considered benchmarks.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0176}, url = {http://global-sci.org/intro/article_detail/cicp/13226.html} }With the observation that the TENO weighting strategy can explicitly distinguish smooth scales from nonsmooth scales in spectral space, in this paper, a new discontinuity indicator is proposed based on the high-order TENO paradigm [Fu et al., JCP 305(2016): 333-359]. The local flow structures are classified as smooth or nonsmooth scales, and the hybrid numerical discretization scheme is applied correspondingly, i.e. the high-order upwind linear scheme without characteristic decomposition is employed for resolving smooth scales while the nonlinear low-dissipation TENO scheme is adopted to capture discontinuities. Since the time-consuming characteristic decomposition and smoothness-indicator computation of TENO are avoided in smooth regions, the overall computational efficiency can be improved significantly. Moreover, the cut-off wavenumber separating smooth and nonsmooth scales is determined by the parameter CT. In contrast to the thresholds of other discontinuity indicators, which are typically defined in physical space, CT takes effects in wavespace rendering its high generality. A set of benchmark cases with widespread length-scales is simulated to assess the performance of the proposed discontinuity indicator and the resulting hybrid shock-capturing scheme. Compared to the monotonicity-preserving discontinuity indicator and the TVB discontinuity indicator, the proposed algorithm delivers better performance with a fixed set of parameters for all considered benchmarks.