- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 785-808.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
Ill-posed Cauchy problems for elliptic partial differential equations appear in many engineering fields. In this paper, we focus on stable reconstruction methods for this kind of inverse problems. Using kernels that reproduce Hilbert spaces $H^m$(Ω), numerical approximations to solutions of elliptic Cauchy problems are formulated as solutions of nonlinear least-squares problems with quadratic inequality constraints (LSQI). A convergence analysis with respect to noise levels and fill distances of data points is provided, from which a Tikhonov regularization strategy is obtained. A nonlinear algorithm using generalized singular value decomposition of matrices and Lagrange multipliers is proposed to solve the LSQI problem. Numerical experiments of two-dimensional cases verify our proved convergence results. By comparing with solutions of MFS and FEM under the discrete Tikhonov regularization by RKHS under same Cauchy data, we demonstrate that our method can reconstruct stable and high accuracy solutions for noisy Cauchy data.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0182}, url = {http://global-sci.org/intro/article_detail/cicp/13147.html} }Ill-posed Cauchy problems for elliptic partial differential equations appear in many engineering fields. In this paper, we focus on stable reconstruction methods for this kind of inverse problems. Using kernels that reproduce Hilbert spaces $H^m$(Ω), numerical approximations to solutions of elliptic Cauchy problems are formulated as solutions of nonlinear least-squares problems with quadratic inequality constraints (LSQI). A convergence analysis with respect to noise levels and fill distances of data points is provided, from which a Tikhonov regularization strategy is obtained. A nonlinear algorithm using generalized singular value decomposition of matrices and Lagrange multipliers is proposed to solve the LSQI problem. Numerical experiments of two-dimensional cases verify our proved convergence results. By comparing with solutions of MFS and FEM under the discrete Tikhonov regularization by RKHS under same Cauchy data, we demonstrate that our method can reconstruct stable and high accuracy solutions for noisy Cauchy data.