- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 631-653.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a class of high order locally divergence-free spectral-discontinuous Galerkin (DG) methods for three dimensional (3D) ideal magnetohydrodynamic (MHD) equations on cylindrical geometry. Under the conventional cylindrical coordinates (r,ϕ,z), we adopt the Fourier spectral method in the ϕ-direction and discontinuous Galerkin (DG) approximation in the (r,z) plane, motivated by the structure of the particular physical flows of magnetically confined plasma. By a careful design of the locally divergence-free set for the magnetic filed, our spectral-DG methods are divergence-free inside each element for the magnetic field. Numerical examples with third order strong-stability-preserving Runge-Kutta methods are provided to demonstrate the efficiency and performance of our proposed methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0187}, url = {http://global-sci.org/intro/article_detail/cicp/13140.html} }In this paper, we propose a class of high order locally divergence-free spectral-discontinuous Galerkin (DG) methods for three dimensional (3D) ideal magnetohydrodynamic (MHD) equations on cylindrical geometry. Under the conventional cylindrical coordinates (r,ϕ,z), we adopt the Fourier spectral method in the ϕ-direction and discontinuous Galerkin (DG) approximation in the (r,z) plane, motivated by the structure of the particular physical flows of magnetically confined plasma. By a careful design of the locally divergence-free set for the magnetic filed, our spectral-DG methods are divergence-free inside each element for the magnetic field. Numerical examples with third order strong-stability-preserving Runge-Kutta methods are provided to demonstrate the efficiency and performance of our proposed methods.