- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 506-530.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we generalize the point integral method to solve the general elliptic PDEs with variable coefficients and corresponding eigenvalue problems with Neumann, Robin and Dirichlet boundary conditions on point cloud. The main idea is using integral equations to approximate the original PDEs. The integral equations are easy to discretize on the point cloud. The truncation error of the integral approximation is analyzed. Numerical examples are presented to demonstrate that PIM is an effective method to solve the elliptic PDEs with smooth coefficients on point cloud.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0024}, url = {http://global-sci.org/intro/article_detail/cicp/13100.html} }In this paper, we generalize the point integral method to solve the general elliptic PDEs with variable coefficients and corresponding eigenvalue problems with Neumann, Robin and Dirichlet boundary conditions on point cloud. The main idea is using integral equations to approximate the original PDEs. The integral equations are easy to discretize on the point cloud. The truncation error of the integral approximation is analyzed. Numerical examples are presented to demonstrate that PIM is an effective method to solve the elliptic PDEs with smooth coefficients on point cloud.