- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1328-1356.
Published online: 2019-01
Cited by
- BibTex
- RIS
- TXT
This work is concerned with the inverse source problem of locating multiple multipolar sources from boundary measurements for the Helmholtz equation. We develop simple and effective sampling schemes for location acquisition of the sources with a single wavenumber. Our algorithms are based on some novel indicator functions whose indicating behaviors could be used to locate multiple multipolar sources. The inversion schemes are totally "direct" in the sense that only simple integral calculations are involved in evaluating the indicator functions. Rigorous mathematical justifications are provided and extensive numerical examples are presented to demonstrate the effectiveness, robustness and efficiency of the proposed methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0020}, url = {http://global-sci.org/intro/article_detail/cicp/12953.html} }This work is concerned with the inverse source problem of locating multiple multipolar sources from boundary measurements for the Helmholtz equation. We develop simple and effective sampling schemes for location acquisition of the sources with a single wavenumber. Our algorithms are based on some novel indicator functions whose indicating behaviors could be used to locate multiple multipolar sources. The inversion schemes are totally "direct" in the sense that only simple integral calculations are involved in evaluating the indicator functions. Rigorous mathematical justifications are provided and extensive numerical examples are presented to demonstrate the effectiveness, robustness and efficiency of the proposed methods.