- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1024-1044.
Published online: 2018-12
Cited by
- BibTex
- RIS
- TXT
Molecular beam epitaxy (MBE) is an important and challenging research topic in material science. In this paper, we propose a new fully discrete scheme for the well-celebrated continuum MBE model with slope selection. First of all, we use a multi-step strategy to discretize the MBE model in time. The obtained semi-discrete scheme is proved to possess properties of total mass conservation, unconditionally energy stability and uniquely solvability. The rigorous error estimate is then conducted to show its second-order convergence. The semi-discrete scheme is further discretized in space using the Fourier pseudo-spectral method. The fully discrete scheme is also shown to preserve mass-conservation and energy-dissipation properties. Afterward, several numerical examples are presented to validate the accuracy and efficiency of our proposed scheme. In particular, the scaling law for the roughness growing and effective energy decaying are captured during long-time coarsening dynamic simulations. The idea proposed in this paper could be readily utilized to design accurate and stable numerical approximations for many other energy-based phase field models.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0015}, url = {http://global-sci.org/intro/article_detail/cicp/12889.html} }Molecular beam epitaxy (MBE) is an important and challenging research topic in material science. In this paper, we propose a new fully discrete scheme for the well-celebrated continuum MBE model with slope selection. First of all, we use a multi-step strategy to discretize the MBE model in time. The obtained semi-discrete scheme is proved to possess properties of total mass conservation, unconditionally energy stability and uniquely solvability. The rigorous error estimate is then conducted to show its second-order convergence. The semi-discrete scheme is further discretized in space using the Fourier pseudo-spectral method. The fully discrete scheme is also shown to preserve mass-conservation and energy-dissipation properties. Afterward, several numerical examples are presented to validate the accuracy and efficiency of our proposed scheme. In particular, the scaling law for the roughness growing and effective energy decaying are captured during long-time coarsening dynamic simulations. The idea proposed in this paper could be readily utilized to design accurate and stable numerical approximations for many other energy-based phase field models.