- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1010-1023.
Published online: 2018-12
Cited by
- BibTex
- RIS
- TXT
Atomic-level structural characterization of flexible proteins, such as intrinsically disordered proteins and multi-domain proteins connected by flexible linkers, is challenging as they possess distinct conformations in physiological conditions. Significant efforts have been made to develop integrated approaches by combining small angle neutron/X-ray scattering experiments with molecular simulations to reveal the distinct atomic structures and the corresponding populations for these flexible proteins. One widely used method, the basis-set supported ensemble method, classifies the simulation-generated protein conformations into a set of structural basis and then derives the corresponding populations by fitting to the experimental data. This method makes an implicit assumption that protein conformations of similar structures have similar small angle scattering profiles.The present work demonstrates that, for various protein systems ranging from compact globular proteins and flexible multi-domain proteins through to intrinsically disordered proteins, this method provides inaccurate assessment of the structural ensemble of the protein molecules due to the breakdown of the assumption made. To alleviate this problem, a two-fold-clustering method is developed to cluster the simulation-generated protein structures using information on both 3D structure and scattering profiles. As benchmarked by both simulation and experimental results, this new method yields much more accurate populations of structural basis of protein molecules.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0140}, url = {http://global-sci.org/intro/article_detail/cicp/12888.html} }Atomic-level structural characterization of flexible proteins, such as intrinsically disordered proteins and multi-domain proteins connected by flexible linkers, is challenging as they possess distinct conformations in physiological conditions. Significant efforts have been made to develop integrated approaches by combining small angle neutron/X-ray scattering experiments with molecular simulations to reveal the distinct atomic structures and the corresponding populations for these flexible proteins. One widely used method, the basis-set supported ensemble method, classifies the simulation-generated protein conformations into a set of structural basis and then derives the corresponding populations by fitting to the experimental data. This method makes an implicit assumption that protein conformations of similar structures have similar small angle scattering profiles.The present work demonstrates that, for various protein systems ranging from compact globular proteins and flexible multi-domain proteins through to intrinsically disordered proteins, this method provides inaccurate assessment of the structural ensemble of the protein molecules due to the breakdown of the assumption made. To alleviate this problem, a two-fold-clustering method is developed to cluster the simulation-generated protein structures using information on both 3D structure and scattering profiles. As benchmarked by both simulation and experimental results, this new method yields much more accurate populations of structural basis of protein molecules.