- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 84-106.
Published online: 2018-09
Cited by
- BibTex
- RIS
- TXT
In this paper, a conformal energy-conserved scheme is proposed for solving the Maxwell's equations with the perfectly matched layer. The equations are split as a Hamiltonian system and a dissipative system, respectively. The Hamiltonian system is solved by an energy-conserved method and the dissipative system is integrated exactly. With the aid of the Strang splitting, a fully-discretized scheme is obtained. The resulting scheme can preserve the five discrete conformal energy conservation laws and the discrete conformal symplectic conservation law. Based on the energy method, an optimal error estimate of the scheme is established in discrete L2-norm. Some numerical experiments are addressed to verify our theoretical analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0219}, url = {http://global-sci.org/intro/article_detail/cicp/12664.html} }In this paper, a conformal energy-conserved scheme is proposed for solving the Maxwell's equations with the perfectly matched layer. The equations are split as a Hamiltonian system and a dissipative system, respectively. The Hamiltonian system is solved by an energy-conserved method and the dissipative system is integrated exactly. With the aid of the Strang splitting, a fully-discretized scheme is obtained. The resulting scheme can preserve the five discrete conformal energy conservation laws and the discrete conformal symplectic conservation law. Based on the energy method, an optimal error estimate of the scheme is established in discrete L2-norm. Some numerical experiments are addressed to verify our theoretical analysis.