- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 1221-1240.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
It has been shown in existing analysis that the Gauss Runge-Kutta (GRK) (also called Legendre-Gauss collocation) formulation is super-convergent when applied to the initial value problem of ordinary differential equations (ODEs) in that the discretization error is order 2s when s Gaussian nodes are used. Additionally, the discretized system can be solved accurately and efficiently using the spectral deferred correction (SDC) or Krylov deferred correction (KDC) method. In this paper, we combine the GRK formulation with the Method of Lines Transpose (MoLT) to solve time-dependent parabolic partial differential equations (PDEs). For the GRK-MoLT formulation, we show how the coupled spatial differential equations can be decoupled and efficiently solved using the SDC or KDC method. Preliminary analysis of the GRK-MoLT algorithm reveals that the super-convergent property of the GRK formulation no longer holds in the PDE case for general boundary conditions, and there exists a new type of "stiffness" in the semi-discrete spatial elliptic differential equations. We present numerical experiments to validate the theoretical findings.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2018.hh80.09}, url = {http://global-sci.org/intro/article_detail/cicp/12325.html} }It has been shown in existing analysis that the Gauss Runge-Kutta (GRK) (also called Legendre-Gauss collocation) formulation is super-convergent when applied to the initial value problem of ordinary differential equations (ODEs) in that the discretization error is order 2s when s Gaussian nodes are used. Additionally, the discretized system can be solved accurately and efficiently using the spectral deferred correction (SDC) or Krylov deferred correction (KDC) method. In this paper, we combine the GRK formulation with the Method of Lines Transpose (MoLT) to solve time-dependent parabolic partial differential equations (PDEs). For the GRK-MoLT formulation, we show how the coupled spatial differential equations can be decoupled and efficiently solved using the SDC or KDC method. Preliminary analysis of the GRK-MoLT algorithm reveals that the super-convergent property of the GRK formulation no longer holds in the PDE case for general boundary conditions, and there exists a new type of "stiffness" in the semi-discrete spatial elliptic differential equations. We present numerical experiments to validate the theoretical findings.