- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 989-1020.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
We propose a hybrid method which combines the Bloch decomposition-based time splitting (BDTS) method and the Gaussian beam method to simulate the Schrödinger equation with periodic potentials in the case of band-crossings. With the help of the Bloch transformation, we develop a Bloch decomposition-based Gaussian beam (BDGB) approximation in the momentum space to solve the Schrödinger equation. Around the band-crossing a BDTS method is used to capture the inter-band transitions, and away from the crossing, a BDGB method is applied in order to improve the efficiency. Numerical results show that this method can capture the inter-band transitions accurately with a computational cost much lower than the direct solver. We also compare the Schrödinger equation with its Dirac approximation, and numerically show that, as the rescaled Planck number ε→0, the Schrödinger equation converges to the Dirac equations when the external potential is zero or small, but for general external potentials there is an O(1) difference between the solutions of the Schrödinger equation and its Dirac approximation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2018.hh80.01}, url = {http://global-sci.org/intro/article_detail/cicp/12315.html} }We propose a hybrid method which combines the Bloch decomposition-based time splitting (BDTS) method and the Gaussian beam method to simulate the Schrödinger equation with periodic potentials in the case of band-crossings. With the help of the Bloch transformation, we develop a Bloch decomposition-based Gaussian beam (BDGB) approximation in the momentum space to solve the Schrödinger equation. Around the band-crossing a BDTS method is used to capture the inter-band transitions, and away from the crossing, a BDGB method is applied in order to improve the efficiency. Numerical results show that this method can capture the inter-band transitions accurately with a computational cost much lower than the direct solver. We also compare the Schrödinger equation with its Dirac approximation, and numerically show that, as the rescaled Planck number ε→0, the Schrödinger equation converges to the Dirac equations when the external potential is zero or small, but for general external potentials there is an O(1) difference between the solutions of the Schrödinger equation and its Dirac approximation.