- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 1065-1089.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We present a high-order discontinuous Galerkin (DG) method for the time domain Maxwell's equations in three-dimensional heterogeneous media. New hierarchical orthonormal basis functions on unstructured tetrahedral meshes are used for spatial discretization while Runge-Kutta methods for time discretization. A uniaxial perfectly matched layer (UPML) is employed to terminate the computational domain. Exponential convergence with respect to the order of the basis functions is observed and large parallel speedup is obtained for a plane-wave scattering model. The rapid decay of the out-going wave in the UPML is shown in a dipole radiation simulation. Moreover, the low frequency electromagnetic fields excited by a horizontal electric dipole (HED) and a vertical magnetic dipole (VMD) over a layered conductive half-space and a high frequency ground penetrating radar (GPR) detection for an underground structure are investigated, showing the high accuracy and broadband simulation capability of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0089}, url = {http://global-sci.org/intro/article_detail/cicp/11271.html} }We present a high-order discontinuous Galerkin (DG) method for the time domain Maxwell's equations in three-dimensional heterogeneous media. New hierarchical orthonormal basis functions on unstructured tetrahedral meshes are used for spatial discretization while Runge-Kutta methods for time discretization. A uniaxial perfectly matched layer (UPML) is employed to terminate the computational domain. Exponential convergence with respect to the order of the basis functions is observed and large parallel speedup is obtained for a plane-wave scattering model. The rapid decay of the out-going wave in the UPML is shown in a dipole radiation simulation. Moreover, the low frequency electromagnetic fields excited by a horizontal electric dipole (HED) and a vertical magnetic dipole (VMD) over a layered conductive half-space and a high frequency ground penetrating radar (GPR) detection for an underground structure are investigated, showing the high accuracy and broadband simulation capability of the proposed method.