- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 913-946.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We propose here a class of numerical schemes for the approximation of weak solutions to nonlinear hyperbolic systems in nonconservative form – the notion of solution being understood in the sense of Dal Maso, LeFloch, and Murat (DLM). The proposed numerical method falls within LeFloch-Mishra's framework of schemes with well-controlled dissipation (WCD), recently introduced for dealing with small-scale dependent shocks. We design WCD schemes which are consistent with a given nonconservative system at arbitrarily high-order and then analyze their linear stability. We then investigate several nonconservative hyperbolic models arising in complex fluid dynamics, and we numerically demonstrate the convergence of our schemes toward physically meaningful weak solutions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0019}, url = {http://global-sci.org/intro/article_detail/cicp/11266.html} }We propose here a class of numerical schemes for the approximation of weak solutions to nonlinear hyperbolic systems in nonconservative form – the notion of solution being understood in the sense of Dal Maso, LeFloch, and Murat (DLM). The proposed numerical method falls within LeFloch-Mishra's framework of schemes with well-controlled dissipation (WCD), recently introduced for dealing with small-scale dependent shocks. We design WCD schemes which are consistent with a given nonconservative system at arbitrarily high-order and then analyze their linear stability. We then investigate several nonconservative hyperbolic models arising in complex fluid dynamics, and we numerically demonstrate the convergence of our schemes toward physically meaningful weak solutions.