- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 890-904.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Defects arise when nematic liquid crystals are under topological constraints at the boundary. Recently the study of defects has drawn a lot of attention because of the growing theoretical and practical significance. In this paper, we investigate the relationship between two-dimensional defects and three-dimensional defects within nematic liquid crystals confined in a shell. A highly accurate spectral method is used to solve the Landau-de Gennes model to get the detailed static structures of defects. Interestingly, the solution is radial-invariant when the thickness of the shell is sufficiently small. As the shell thickness increases, the solution undergoes symmetry break to reconfigure the disclination lines. We study this three-dimensional reconfiguration of disclination lines in detail under different boundary conditions. In particular, we find that the temperature plays an important role in deciding whether the transition between two-dimensional defects and three-dimensional defects is continuous or discontinuous for the shell with planar anchoring condition on both inner and outer surfaces. We also discuss the characterization of defects in two- and three-dimensional spaces within the tensor model.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0034}, url = {http://global-sci.org/intro/article_detail/cicp/11264.html} }Defects arise when nematic liquid crystals are under topological constraints at the boundary. Recently the study of defects has drawn a lot of attention because of the growing theoretical and practical significance. In this paper, we investigate the relationship between two-dimensional defects and three-dimensional defects within nematic liquid crystals confined in a shell. A highly accurate spectral method is used to solve the Landau-de Gennes model to get the detailed static structures of defects. Interestingly, the solution is radial-invariant when the thickness of the shell is sufficiently small. As the shell thickness increases, the solution undergoes symmetry break to reconfigure the disclination lines. We study this three-dimensional reconfiguration of disclination lines in detail under different boundary conditions. In particular, we find that the temperature plays an important role in deciding whether the transition between two-dimensional defects and three-dimensional defects is continuous or discontinuous for the shell with planar anchoring condition on both inner and outer surfaces. We also discuss the characterization of defects in two- and three-dimensional spaces within the tensor model.