- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 162-181.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We construct a nonlinear monotone finite volume scheme for three-dimensional diffusion equation on tetrahedral meshes. Since it is crucial important to eliminate the vertex unknowns in the construction of the scheme, we present a new efficient eliminating method. The scheme has only cell-centered unknowns and can deal with discontinuous or tensor diffusion coefficient problems on distorted meshes rigorously. The numerical results illustrate that the resulting scheme can preserve positivity on distorted tetrahedral meshes, and also show that our scheme appears to be approximate second-order accuracy for solution.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220415.090516a}, url = {http://global-sci.org/intro/article_detail/cicp/11236.html} }We construct a nonlinear monotone finite volume scheme for three-dimensional diffusion equation on tetrahedral meshes. Since it is crucial important to eliminate the vertex unknowns in the construction of the scheme, we present a new efficient eliminating method. The scheme has only cell-centered unknowns and can deal with discontinuous or tensor diffusion coefficient problems on distorted meshes rigorously. The numerical results illustrate that the resulting scheme can preserve positivity on distorted tetrahedral meshes, and also show that our scheme appears to be approximate second-order accuracy for solution.