- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 1476-1487.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Coarse-grained molecular dynamics simulations of DPPC lipid bilayers were performed with different system sizes at T = 323 K for a period of 1 µs. The structural properties of the systems were demonstrated by examining the area and volume per lipid, electron density profile, order parameter, and the lipid bilayer thickness. It was shown that the finite system size has a negligible effect on the ensemble averages of the area and volume per lipid, the order parameter, and the bilayer thickness. However, the electron density profiles become smoother and wider at a larger system size due to the increasing surface/interface fluctuation from undulations. On the other hand, the lipid dynamics was quantified by computing the lateral diffusion coefficients of DPPC molecules. It was revealed that, the effective lateral diffusion coefficient of DPPC increases initially by 19% as the bilayer increases from 64 to 256 lipids per leaflet, and then it changes slightly and fluctuates around a steady value as the system further expands.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0056}, url = {http://global-sci.org/intro/article_detail/cicp/11223.html} }Coarse-grained molecular dynamics simulations of DPPC lipid bilayers were performed with different system sizes at T = 323 K for a period of 1 µs. The structural properties of the systems were demonstrated by examining the area and volume per lipid, electron density profile, order parameter, and the lipid bilayer thickness. It was shown that the finite system size has a negligible effect on the ensemble averages of the area and volume per lipid, the order parameter, and the bilayer thickness. However, the electron density profiles become smoother and wider at a larger system size due to the increasing surface/interface fluctuation from undulations. On the other hand, the lipid dynamics was quantified by computing the lateral diffusion coefficients of DPPC molecules. It was revealed that, the effective lateral diffusion coefficient of DPPC increases initially by 19% as the bilayer increases from 64 to 256 lipids per leaflet, and then it changes slightly and fluctuates around a steady value as the system further expands.