- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 250-278.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We construct and analyze conservative local discontinuous Galerkin (LDG) methods for the Generalized Korteweg-de-Vries equation. LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives. The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution, and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction. Numerical experiments are provided to verify the theoretical estimates.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.240815.301215a}, url = {http://global-sci.org/intro/article_detail/cicp/11152.html} }We construct and analyze conservative local discontinuous Galerkin (LDG) methods for the Generalized Korteweg-de-Vries equation. LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives. The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution, and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction. Numerical experiments are provided to verify the theoretical estimates.