- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 1409-1434.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The Brinkman model describes flow of fluid in complex porous media with a high-contrast permeability coefficient such that the flow is dominated by Darcy in some regions and by Stokes in others. A weak Galerkin (WG) finite element method for solving the Brinkman equations in two or three dimensional spaces by using polynomials is developed and analyzed. The WG method is designed by using the generalized functions and their weak derivatives which are defined as generalized distributions. The variational form we considered in this paper is based on two gradient operators which is different from the usual gradient-divergence operators for Brinkman equations. The WG method is highly flexible by allowing the use of discontinuous functions on arbitrary polygons or polyhedra with certain shape regularity. Optimal-order error estimates are established for the corresponding WG finite element solutions in various norms. Some computational results are presented to demonstrate the robustness, reliability, accuracy, and flexibility of the WG method for the Brinkman equations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.scpde14.44s}, url = {http://global-sci.org/intro/article_detail/cicp/11136.html} }The Brinkman model describes flow of fluid in complex porous media with a high-contrast permeability coefficient such that the flow is dominated by Darcy in some regions and by Stokes in others. A weak Galerkin (WG) finite element method for solving the Brinkman equations in two or three dimensional spaces by using polynomials is developed and analyzed. The WG method is designed by using the generalized functions and their weak derivatives which are defined as generalized distributions. The variational form we considered in this paper is based on two gradient operators which is different from the usual gradient-divergence operators for Brinkman equations. The WG method is highly flexible by allowing the use of discontinuous functions on arbitrary polygons or polyhedra with certain shape regularity. Optimal-order error estimates are established for the corresponding WG finite element solutions in various norms. Some computational results are presented to demonstrate the robustness, reliability, accuracy, and flexibility of the WG method for the Brinkman equations.