- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 1242-1264.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, an approach combining the DG method in space with CG method in time (CG-DG method) is developed to solve time-dependent Maxwell's equations when meta-materials are involved. Both the unconditional $L^2$-stability and error estimate of order $\mathcal{O}$($τ^ {r+1}$+$h^{k+\frac{1}{2}}$) are obtained when polynomials of degree at most r is used for the temporal discretization and at most k for the spatial discretization. Numerical results in 3D are given to validate the theoretical results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.scpde14.35s}, url = {http://global-sci.org/intro/article_detail/cicp/11127.html} }In this paper, an approach combining the DG method in space with CG method in time (CG-DG method) is developed to solve time-dependent Maxwell's equations when meta-materials are involved. Both the unconditional $L^2$-stability and error estimate of order $\mathcal{O}$($τ^ {r+1}$+$h^{k+\frac{1}{2}}$) are obtained when polynomials of degree at most r is used for the temporal discretization and at most k for the spatial discretization. Numerical results in 3D are given to validate the theoretical results.