- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 24-52.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the Camassa-Holm equation and the Degasperis-Procesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however, they also have the significant differences, for example, there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.171114.140715a}, url = {http://global-sci.org/intro/article_detail/cicp/11079.html} }In this paper, we study the Camassa-Holm equation and the Degasperis-Procesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however, they also have the significant differences, for example, there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation.