- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 1-23.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Numerical oscillation of the total energy can be observed when the Kohn-Sham equation is solved by real-space methods to simulate the translational move of an electronic system. Effectively remove or reduce the unphysical oscillation is crucial not only for the optimization of the geometry of the electronic structure, but also for the study of molecular dynamics. In this paper, we study such unphysical oscillation based on the numerical framework in [G. Bao, G. H. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics, Volume 231, Issue 14, Pages 4967-4979, 2012], and deliver some numerical methods to constrain such unphysical effect for both pseudopotential and all-electron calculations, including a stabilized cubature strategy for Hamiltonian operator, and an a posteriori error estimator of the finite element methods for Kohn-Sham equation. The numerical results demonstrate the effectiveness of our method on restraining unphysical oscillation of the total energies.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.190115.200715a}, url = {http://global-sci.org/intro/article_detail/cicp/11078.html} }Numerical oscillation of the total energy can be observed when the Kohn-Sham equation is solved by real-space methods to simulate the translational move of an electronic system. Effectively remove or reduce the unphysical oscillation is crucial not only for the optimization of the geometry of the electronic structure, but also for the study of molecular dynamics. In this paper, we study such unphysical oscillation based on the numerical framework in [G. Bao, G. H. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics, Volume 231, Issue 14, Pages 4967-4979, 2012], and deliver some numerical methods to constrain such unphysical effect for both pseudopotential and all-electron calculations, including a stabilized cubature strategy for Hamiltonian operator, and an a posteriori error estimator of the finite element methods for Kohn-Sham equation. The numerical results demonstrate the effectiveness of our method on restraining unphysical oscillation of the total energies.