- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 931-956.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.081214.240515s}, url = {http://global-sci.org/intro/article_detail/cicp/11056.html} }This study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.