- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 380-416.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We study the settling of solid particles in a viscous incompressible fluid contained within a two-dimensional channel, where the mass density of the particles is greater than that of the fluid. The fluid-structure interaction problem is simulated numerically using the immersed boundary method, where the added mass is incorporated using a Boussinesq approximation. Simulations are performed with a single circular particle, and also with two particles in various initial configurations. The terminal particle settling velocity and drag coefficient correspond closely with other theoretical, experimental and numerical results, and the particle trajectories reproduce the expected behavior qualitatively. In particular, simulations of a pair of interacting particles similar drafting-kissing-tumbling dynamics to that observed in other experimental and numerical studies.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.061113.050115a}, url = {http://global-sci.org/intro/article_detail/cicp/11032.html} }We study the settling of solid particles in a viscous incompressible fluid contained within a two-dimensional channel, where the mass density of the particles is greater than that of the fluid. The fluid-structure interaction problem is simulated numerically using the immersed boundary method, where the added mass is incorporated using a Boussinesq approximation. Simulations are performed with a single circular particle, and also with two particles in various initial configurations. The terminal particle settling velocity and drag coefficient correspond closely with other theoretical, experimental and numerical results, and the particle trajectories reproduce the expected behavior qualitatively. In particular, simulations of a pair of interacting particles similar drafting-kissing-tumbling dynamics to that observed in other experimental and numerical studies.