- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 18 (2015), pp. 351-379.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A new Particle Vortex Method, called Diffused Vortex Hydrodynamics (DVH), is presented in this paper. The DVH is a meshless method characterized by the use of a regular distribution of points close to a solid surface to perform the vorticity diffusion process in the boundary layer regions. This redistribution avoids excessive clustering or rarefaction of the vortex particles providing robustness and high accuracy to the method. The generation of the regular distribution of points is performed through a packing algorithm which is embedded in the solver. The packing algorithm collocates points regularly around body of arbitrary shape allowing an exact enforcement on the solid surfaces of the no-slip boundary condition. The present method is tested and validated on different problems of increasing complexities up to flows with Reynolds number equal to 100,000 (without using any subgrid-scale turbulence model).
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.271014.200415a}, url = {http://global-sci.org/intro/article_detail/cicp/11031.html} }A new Particle Vortex Method, called Diffused Vortex Hydrodynamics (DVH), is presented in this paper. The DVH is a meshless method characterized by the use of a regular distribution of points close to a solid surface to perform the vorticity diffusion process in the boundary layer regions. This redistribution avoids excessive clustering or rarefaction of the vortex particles providing robustness and high accuracy to the method. The generation of the regular distribution of points is performed through a packing algorithm which is embedded in the solver. The packing algorithm collocates points regularly around body of arbitrary shape allowing an exact enforcement on the solid surfaces of the no-slip boundary condition. The present method is tested and validated on different problems of increasing complexities up to flows with Reynolds number equal to 100,000 (without using any subgrid-scale turbulence model).