- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 925-936.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Homogeneous equilibrium model (HEM) has been widely used in cavitating flow simulations. The major feature of this model is that a single equation of state (EOS) is proposed to describe the thermal behavior of bubbly liquid, where both kinematic and thermal equilibrium are assumed between two phases. In this paper, the HEM was coupled with multi-relaxation-time lattice Boltzmann model (MRT-LBM) and the acoustic behavior was simulated. Two approaches were applied alternatively: adjusting speed of sound (Buick, J. Phys. A, 2006, 39:13807-13815) and setting real gas EOS. Both approaches result in high accuracy in acoustic speed predictions for different void (gas) volume of fractions. It is demonstrated that LBM could be successfully applied as a Navier-Stokes equation solver for industrial applications. However, further dissipation and dispersion analysis shows that Shan-Chen type approaches of LBM are deficient, especially in large wave-number region.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2014.m283}, url = {http://global-sci.org/intro/article_detail/cicp/10984.html} }Homogeneous equilibrium model (HEM) has been widely used in cavitating flow simulations. The major feature of this model is that a single equation of state (EOS) is proposed to describe the thermal behavior of bubbly liquid, where both kinematic and thermal equilibrium are assumed between two phases. In this paper, the HEM was coupled with multi-relaxation-time lattice Boltzmann model (MRT-LBM) and the acoustic behavior was simulated. Two approaches were applied alternatively: adjusting speed of sound (Buick, J. Phys. A, 2006, 39:13807-13815) and setting real gas EOS. Both approaches result in high accuracy in acoustic speed predictions for different void (gas) volume of fractions. It is demonstrated that LBM could be successfully applied as a Navier-Stokes equation solver for industrial applications. However, further dissipation and dispersion analysis shows that Shan-Chen type approaches of LBM are deficient, especially in large wave-number region.