- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 17 (2015), pp. 458-486.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
It is well known that conventional edge elements in solving vector Maxwell's eigenvalue equations by the finite element method will lead to the presence of spurious zero eigenvalues. This problem has been addressed for the first order edge element by Kikuchi by the mixed element method. Inspired by this approach, this paper describes a higher order mixed spectral element method (mixed SEM) for the computation of two-dimensional vector eigenvalue problem of Maxwell's equations. It utilizes Gauss-Lobatto-Legendre (GLL) polynomials as the basis functions in the finite-element framework with a weak divergence condition. It is shown that this method can suppress all spurious zero and nonzero modes and has spectral accuracy. A rigorous analysis of the convergence of the mixed SEM is presented, based on the higher order edge element interpolation error estimates, which fully confirms the robustness of our method. Numerical results are given for homogeneous, inhomogeneous, L-shape, coaxial and dual-inner-conductor cavities to verify the merits of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.230113.140814a}, url = {http://global-sci.org/intro/article_detail/cicp/10965.html} }It is well known that conventional edge elements in solving vector Maxwell's eigenvalue equations by the finite element method will lead to the presence of spurious zero eigenvalues. This problem has been addressed for the first order edge element by Kikuchi by the mixed element method. Inspired by this approach, this paper describes a higher order mixed spectral element method (mixed SEM) for the computation of two-dimensional vector eigenvalue problem of Maxwell's equations. It utilizes Gauss-Lobatto-Legendre (GLL) polynomials as the basis functions in the finite-element framework with a weak divergence condition. It is shown that this method can suppress all spurious zero and nonzero modes and has spectral accuracy. A rigorous analysis of the convergence of the mixed SEM is presented, based on the higher order edge element interpolation error estimates, which fully confirms the robustness of our method. Numerical results are given for homogeneous, inhomogeneous, L-shape, coaxial and dual-inner-conductor cavities to verify the merits of the proposed method.