- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 822-845.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we first compute the multiple non-trivial solutions of the Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combined with Legendre pseudospectral methods. Then, starting from the non-trivial solution branches of the corresponding nonlinear problem, we further obtain the whole positive solution branch with $D_4$ symmetry of the Schrödinger equation numerically by pseudo-arclength continuation algorithm. Next, we propose the extended systems, which can detect the fold and symmetry-breaking bifurcation points on the branch of the positive solutions with $D_4$ symmetry. We also compute the multiple positive solutions with various symmetries of the Schrödinger equation by the branch switching method based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schrödinger equation. Numerical results demonstrate the effectiveness of these approaches.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0020}, url = {http://global-sci.org/intro/article_detail/cicp/10550.html} }In this paper, we first compute the multiple non-trivial solutions of the Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combined with Legendre pseudospectral methods. Then, starting from the non-trivial solution branches of the corresponding nonlinear problem, we further obtain the whole positive solution branch with $D_4$ symmetry of the Schrödinger equation numerically by pseudo-arclength continuation algorithm. Next, we propose the extended systems, which can detect the fold and symmetry-breaking bifurcation points on the branch of the positive solutions with $D_4$ symmetry. We also compute the multiple positive solutions with various symmetries of the Schrödinger equation by the branch switching method based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schrödinger equation. Numerical results demonstrate the effectiveness of these approaches.