- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 665-684.
Published online: 2018-03
Cited by
- BibTex
- RIS
- TXT
Particle laden turbulent flows occur in a variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we will present results on the development of numerical algorithms, based on the lattice Boltzmann method, suitable for the study of suspensions of finite-size particles under turbulent flow conditions. The turbulent flow is modeled by the lattice Boltzmann method, and the interaction between particles and carrier fluid is modeled using the bounce-back rule. Direct contact and lubrication force models for particle-particle interactions and particle-wall interaction are taken into account to allow for a full four-way coupled interaction. The accuracy and robustness of the method is discussed by validating the velocity profile in turbulent pipe flow, the sedimentation velocity of spheres in duct flow and the resistance functions of approaching particles. Preliminary results from the turbulent pipe flow simulations with particles show that the angular and axial velocities of the particles are scattered around values of mean axial velocity and shear rate obtained from the Eulerian velocity field.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0268}, url = {http://global-sci.org/intro/article_detail/cicp/10543.html} }Particle laden turbulent flows occur in a variety of industrial applications. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we will present results on the development of numerical algorithms, based on the lattice Boltzmann method, suitable for the study of suspensions of finite-size particles under turbulent flow conditions. The turbulent flow is modeled by the lattice Boltzmann method, and the interaction between particles and carrier fluid is modeled using the bounce-back rule. Direct contact and lubrication force models for particle-particle interactions and particle-wall interaction are taken into account to allow for a full four-way coupled interaction. The accuracy and robustness of the method is discussed by validating the velocity profile in turbulent pipe flow, the sedimentation velocity of spheres in duct flow and the resistance functions of approaching particles. Preliminary results from the turbulent pipe flow simulations with particles show that the angular and axial velocities of the particles are scattered around values of mean axial velocity and shear rate obtained from the Eulerian velocity field.