Volume 27, Issue 1
Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals on Triebel-Lizorkin Spaces

Y. M. Niu & S. P. Tao

Anal. Theory Appl., 27 (2011), pp. 59-75.

Published online: 2011-01

Preview Full PDF 331 769
Export citation
  • Abstract

In this paper, we obtain the boundedness of the parabolic singular integral operatorT with kernel in $L(\log L)1/gamma (S^n−1)$ on Triebel-Lizorkin spaces. Moreover, we prove theboundedness of a class of Marcinkiewicz integrals $\mu_{\Omega,q}(f)$ from $\|f\|_{{F_{p}^{0,q}}(R^n)}$into $L^p(R^n)$.

  • Keywords

weak type inequalitiy fractional integral operator (generalized) non-homogeneous Morrey psace

  • AMS Subject Headings

42B25 42B35 47G10

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{ATA-27-59, author = {Y. M. Niu and S. P. Tao}, title = {Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals on Triebel-Lizorkin Spaces}, journal = {Analysis in Theory and Applications}, year = {2011}, volume = {27}, number = {1}, pages = {59--75}, abstract = {In this paper, we obtain the boundedness of the parabolic singular integral operatorT with kernel in $L(\log L)1/gamma (S^n−1)$ on Triebel-Lizorkin spaces. Moreover, we prove theboundedness of a class of Marcinkiewicz integrals $\mu_{\Omega,q}(f)$ from $\|f\|_{{F_{p}^{0,q}}(R^n)}$into $L^p(R^n)$.}, issn = {1573-8175}, doi = {https://doi.org/10.1007/s10496-011-0059-x}, url = {http://global-sci.org/intro/article_detail/ata/4580.html} }
Copy to clipboard
The citation has been copied to your clipboard