Volume 30, Issue 1
Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

J. Xiao & W. Xu

Anal. Theory Appl., 30 (2014), pp. 1-19

Published online: 2014-03

Preview Full PDF 387 877
Export citation
  • Abstract

This note addresses monotonic growths and logarithmic convexities ofthe weighted ($(1-t^2)^\alpha dt^2$, $-\infty <\alpha <\infty$, $0< t< 1$) integral means $\mathsf{A}_{\alpha,\beta}(f,\cdot)$ and$\mathsf{L}_{\alpha,\beta}(f,\cdot)$ of the mixed area $(\pir^2)^{-\beta}A(f,r)$ and the mixed length $(2\pi r)^{-\beta}L(f,r)$($0\le\beta\le 1$ and $0< r< 1$) of $f(r\mathbb D)$ and $\partialf(r\mathbb D)$ under a holomorphic map $f$ from the unit disk$\mathbb D$ into the finite complex plane $\mathbb C$.

  • Keywords

Monotonic growth logarithmic convexity mean mixed area mean mixed length isoperimetric inequality holomorphic map univalent function

  • AMS Subject Headings

32A10 32A36 51M25

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • References
  • Hide All
    View All

@Article{ATA-30-1, author = {J. Xiao and W. Xu}, title = {Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings}, journal = {Analysis in Theory and Applications}, year = {2014}, volume = {30}, number = {1}, pages = {1--19}, abstract = {This note addresses monotonic growths and logarithmic convexities ofthe weighted ($(1-t^2)^\alpha dt^2$, $-\infty <\alpha <\infty$, $0< t< 1$) integral means $\mathsf{A}_{\alpha,\beta}(f,\cdot)$ and$\mathsf{L}_{\alpha,\beta}(f,\cdot)$ of the mixed area $(\pir^2)^{-\beta}A(f,r)$ and the mixed length $(2\pi r)^{-\beta}L(f,r)$($0\le\beta\le 1$ and $0< r< 1$) of $f(r\mathbb D)$ and $\partialf(r\mathbb D)$ under a holomorphic map $f$ from the unit disk$\mathbb D$ into the finite complex plane $\mathbb C$.}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2014.v30.n1.1}, url = {http://global-sci.org/intro/article_detail/ata/4470.html} }
Copy to clipboard
The citation has been copied to your clipboard