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Abstract. This note addresses monotonic growths and logarithmic convexities of the
weighted ((1—2)%dt?, —o0 <@ < oo, 0 <t < 1) integral means Aup(f,) and Ly p(f,")
of the mixed area (71r>) P A(f,r) and the mixed length (27tr) “PL(f,r) (0<B <1 and
0<r<1)of f(rID) and 9f(rID) under a holomorphic map f from the unit disk ID into
the finite complex plane C.
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1 Introduction

From now on, D represents the unit disk in the finite complex plane C, H(ID) denotes the
space of holomorphic mappings f:ID—C, and U(ID) stands for all univalent functions in
H(DD). For any real number «, positive number r € (0,1) and the standard area measure
dA, let

dA,(z)=(1—|z]*)%dA(z), "D={zeD:|z|<r}, rT={z€D:|z|=r}.

In their recent paper [11], Xiao and Zhu have discussed the following area 0 < p < co-
integral mean of f € H(ID):

Malfr)= 5oy [ VA
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proving that 7+ M, ,(f,r) is strictly increasing unless f is a constant, and logr —
logM,, . (f,r) is not always convex. This last result suggests such a conjecture that
logr—log My« (f,r) is convex or concave when a <0 or a« >0. But, motivated by [11, Ex-
ample 10, (ii)] we can choose p=2, a =1, f(z) =z+c and ¢ > 0 to verify that the conjec-
ture is not true. At the same time, this negative result was also obtained in Wang-Zhu'’s
manuscript [10]. So far it is unknown whether the conjecture is generally true for p #2-
see [9] for a recent development.

The foregoing observation has actually inspired the following investigation. Our con-
centration is the fundamental case p =1. To understand this new approach, let us take a
look at M ,(-,-) from a differential geometric viewpoint. Note that

_ plfldAs 5 [@rt) 7 [ lf (2)]dz]] (1-#)*d?
Ml,zx(f;”)— E“(T’JD) == fOT _tZ adf2 '

So, if fe U(ID), then
)t [ If @)z

is a kind of mean of the length of 9f (tID), and hence the square of this mean dominates a
sort of mean of the area of f(tID) in the isoperimetric sense:

Oa(f0 =) [ If @A) < [@r) ! [ 1G] = (@)

In accordance with the well-known Pélya-Szegé monotone principle [8, Problem 309]
(or [2, Proposition 6.1]) and the area Schwarz’s lemma in Burckel, Marshall, Minda,
Poggi-Corradini and Ransford [2, Theorem 1.9], ®(f,-) and ®(f,-) are strictly increas-
ing on (0,1) unless f(z) =a1z with a3 #0. Furthermore, log®; (f,7) and log®(f,r),
equivalently, log L(f,r) and log A(f,r), are convex functions of logr for r€(0,1), due to the
classical Hardy’s convexity and [2, Section 5]. Perhaps, it is worthwhile to mention that if
¢>0 is small enough then the universal cover of ID onto the annulus {¢=¢/2 < |z| <¢"/2}:

f(z)=exp [iclog (g)}

enjoys the property that logri— log A(f,r) is not convex; see [2, Example 5.1].
In the above and below, we have used the following convention:

A(fr) L(fr)
7tr2

27tr

4

Du(f,r)= and Pp(f,r)=

where under r € (0,1) and f € H(ID), A(f,r) and L(f,r) stand respectively for the area
of f(rD) (the projection of the Riemannian image of rID by f) and the length of df(rD)
(the boundary of the projection of the Riemannian image of ID by f) with respect to the
standard Euclidean metric on C. For our purpose, we choose a shortcut notation

du, ()= (1—13)%d* and v, (t)=pu.([0,t]), Vte(0,1),
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and for 0< B <1 define

_ ALY CL(f)
@A,,B(f/t)— (ﬂtz)ﬁ and ch,ﬁ(f/t)— (27.(t)‘3’
and then introduce two natural analytic-geometric quantities
T’q) ’t d t Tq) ,t d t
puplf )= D PapUDA) gy gy S Pl a0
Jo dpa(t) T dpa(t)

which are respectively called the weighted integral means of the mixed area and the
mixed length for f(rID) and df(rD).

In this note, we consider two fundamental properties: monotonic growths and loga-
rithmic convexities of both A, 5(f,r) and L, g(f,r), thereby giving two applications: (i) if
r— ®p(f,r) is monotone increasing on (0,1), then so is the isoperimetry-induced func-
tion:

S @i ()] dpalt)
Jo dia(t)

(ii) the log-convexity for L, 1(f,r) essentially settles the above-mentioned conjecture. The
non-trivial details (results and their proofs) are arranged in the forthcoming two sections.

re

> Aa,l (f/r)}

2 Monotonic growth

In this section, we deal with the monotonic growths of A, 5(f,7) and L, g(f,7), along with
their associated Schwarz type lemmas. In what follows, IN is used as the set of all natural
numbers.

2.1 Two lemmas

The following two preliminary results are needed.
Lemma 2.1 (see [5]). Let f € H(ID) be of the form f(z)=ao+Y 5, axz" with n € IN. Then:

(i) rrr®" [W]Z <A(f,r), Vre(0,1).

(i) 27tr" [W} <L(f,r), Vre(0,1).
Moreover, equality in (i) or (ii) holds if and only if f(z) =ao+a,z".

Proof. This may be viewed as the higher order Schwarz type lemma for area and length.
See also the proofs of Theorems 1 and 2 in [5], and their immediate remarks on equali-
ties. Here it is worth noticing three matters: (a) f")(0)/n! is just a,; (b) [4, Corollary 3]
presents a different argument for the area case; (c) L(f,r) is greater than or equal to the
length I(r,f) of the outer boundary of f(rID) (defined in [5]) which is not less than the
length I*(r, f) of the exact outer boundary of f(rID) (introduced in [12]). O
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Lemma 2.2. Let 0<S<1.

(i) If f € H(ID), then r+—® 4 g(f,r) is strictly increasing on (0,1) unless

fe constant, when <1,
| linear map, when B=1.

(ii) If f e U(ID) or f(z) =ag+a,z" with n €N, then v ®r g(f,r) is strictly increasing on
(0,1) unless

J= constant, when B<1,
| linear map, when B=1.

Proof. 1t is enough to handle B <1 since the case f=1 has been treated in [2, Theorem 1.9
and Proposition 6.1]. The monotonic growths in (i) and (ii) follow from

Dap(f,r)= (mfz)l_ﬁCDA,l (f,r) and L(f,r)= (an)l_ﬁCDL,l (f,7r).

To see the strictness, we consider two cases.
(i) Suppose that ® 4 g(f,-) is not strictly increasing. Then there are r1,7> € (0,1) such
that r; <r2, and ®4 g(f,-) is a constant on [ry,r;]. Hence

d

ﬂq)A’ﬁ (f,r)=0, Vrelr,r).

Equivalently,
2BAfr)=r LA, Vel
But, according to [2, (4.2)],

2A(f,r)§r%A(f,r), vre(0,1).

Since B <1, we get A(f,r) =0 for all r € [r1,r2], whence finding that f is constant.

(ii) Now assume that ®; g(f,-) is not strictly increasing. There are 3,74 € (0,1) such
that r3 <ry and

0=2 @1 (5.1 = @) P[50 -BLirn] =0, vrebanl
If feU(D), then

L= [ If @)ljez]

and hence one has the following "first variation formula”

Ly r)—/zny ’(rei9)|de+ri/2”| (ré®) |48, Vr € [rara]
dr f’ - 0 f dr 0 f 7 3,74].
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The previous three equations yield

:(1—[3)/02 |f (rele)]dG—l—rd / f'(re®)|de, Vrelrs,ry],

and so 2
7T .
/ I (re®)|d0 =0, Vr€[rs,ral.
0

This ensures that f is a constant, contradicting f € U(ID). Therefore, f(z) is of the form
ap+a,z". But, since L(z",r) =27r" is strictly increasing, f must be constant. O

2.2 Monotonic growth of A, 4(f,-)

This aspect is essentially motivated by the following Schwarz type lemma.

Proposition 2.1. Let —co<a <00, 0<B<1, and f€H (D) be of the form f(z)=a0+) s, axz
with n €IN. Then

g [ !f(”;'(O)\rgAa,ﬁ(f,r) [

V(1)
Jo 2 =Pldp, (t)

], Vre(0,1),

with equality if and only if f(z) =a¢+a,z".
Proof. The inequality follows from Lemma 2.1(i) right away. When f(z) =a9+a,z", the
last inequality becomes an equality due to the equality case of Lemma 2.1(i). Conversely,

suppose that the last inequality is an equality. If f does not have the form a9+a,z", then
the equality in Lemma 2.1(i) is not true, then there are r1,r; € (0,1) such that r; <r, and

A(f,t) > " {M} 2, Vi€ [r,72].

n!

This strict inequality forces that for r € [r1,12],

7.(1—,8[‘f(n)<0)’]Z/rtZ(n—‘B)d‘ua(t)

! 0

:/0 (t?)~ ﬁA(ft)dw( /+/ +/ nt2 “PA(f t)dpa(t)
i~ ﬁ ‘f /t2 Py, (1)

a contradiction. Thus f(z) =ag+a,z". O

Based on Proposition 2.1, we find the monotonic growth for A, 4(-,-) as follows.
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Theorem 2.1. Let —co <a < oo, 0<B<1, and f € H(ID). Then r Ay g(f,r) is strictly
increasing on (0,1) unless

= constant, when B<1,
| linear map, when B=1.

Consequently,
(1)
. [o, when <1,
}%Aa,ﬁ(f/r)—{ 1F'(0)[2, when B=1.
(i) If

qDA,ﬁ (f,O) :zlimCI)A,[; (f,i’) and CDA,ﬁ (f,l) :zlim@A,ﬁ (f,i’) < 0o,
r—0 r—1

then

Ay ,B<f ) _Aa,ﬁ (f,?’)

1
O<r<s<l=0< logv“( )—logva(r)

<SPy p(f,5)—Pap(f0)
with equality if and only if

= constant,  when B<1,
| linear map, when B=1.

In particular, t— A, g(f,t) is Lipschitz with respect to logv,(t) for t € (0,1).

Proof. Note that v,(r fo duy(t). So dvy(r), the differential of v, (r) with respect to r €
(0,1), equals dp, (7). By integration by parts we have

Dap(fir)valr / Dy p(f t)dpa(t)= /r {%@Alﬁ(f,t)}va(t)dt.

Differentiating the function A, g(f,r) with respect to r and using Lemma 2.2(i), we get

o d & _ 2\
%Aa,ﬁ(f,r) Dup(f,r)2r(l—r )%, VE{E)ZDA[} (f,t)du ()} r(1—72)
:21’<1 ) [CDA‘B(ft 1/“ fO q>A,B f t)d]/la( )]
vy (1)?

2P i [ apl0] e

Ve (r)? N
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As aresult, r— A, g(f,r) increases on (0,1).
Next suppose that the just-verified monotonicity is not strict. Then there exist two
numbers 1,7 € (0,1) such that r; <r, and

Aa,ﬁ (f/rl) = Azx,‘B(f/r) = Atx,‘B(f,T’z), Vre [1’1,1’2].
Consequently,
d
EAa,ﬁ (f,r)=0, Vrelr,r],
and so

/Or [%q)z‘l,ﬁ (f/t)] Vo (1)dt=0, Vrelr,r].

Then we must have
;tCDA p(f,t)=0, Vte(0,r), with refr,n],

whence getting that if § <1 then f must be constant or if =1 then f must be linear,
thanks to the argument for the strictness in Lemma 2.2(i).
It remains to check the rest of Theorem 2.1.

(i) The monotonic growth of A, 4(f,-) ensures the existence of the limit. An applica-
tion of L'Hopital’s rule gives

' L (o when <1,
HimAwp(f.r) =lim®a p(f.7) —{ f'(0)?, when p=1.

(ii) Again, the above monotonicity formula of A, g(f,-) plus the given condition yields
that fors€ (0,1),

sup Agp(f,r) =Aap(f,s) <oo.
re(0,s)

Integrating by parts twice and using the monotonicity of ®4 g(f,-), we obtain that under
O<r<s<l,

0<Aup(f,5)~AuplF)= [ S%Aw (f,)dt

([ [t ) [ 2240

_/ Ve (£)Pap(f,t) /q)Aﬁ dl/,,AT))[ (t()t”

<[@ap(fs)—Pap(f.0)] /r EiZ"((t)) :

This gives the desired inequality right away. Furthermore, the above argument plus
Lemma 2.2(i) derives the equality case. O
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As an immediate consequence of Theorem 2.1, we get a sort of “norm” estimate asso-

ciated with @4 4(f,-).

Corollary 2.1. Let —oco<a<oo0,0<A<1and f€ H(D).

(1) If —oo<a < —1, then

1 r
| @ap(f.0dua(t)= sup [ @ap(f,t)dus(t)<eo
0 re(0,1)70

if and only if f is constant. Moreover, sup, g 1)As(f,7) =Pap(f1).
(ii) If -1 <a < oo, then

A“,'B<f,7’) < A(x,ﬁ (f,l) = Sl(,:)pl)A“,ﬁ (f,S), Vre (0,1),
se(0,

where the inequality becomes an equality for all r € (0,1) if and only if

= constant, when B<1,
| linear map, when B=1.

(iii) The following function a+> A, g(f,1) is strictly decreasing on (—1,00) unless

= constant, when B<1,
~ | linear map, when g=1.

Proof. (i) By Theorem 2.1, we have

o ) dug (t
Aoglfr) < 28U

, Vre(0,s).
Note that

limv,(s) =00 and hm/ D4 p(f,t)dualt) / D4 p(f,t)dpalt).

s—1

So, the last integral is finite if and only if
qDA,ﬁ (f,i’) =0, Vre <O,1),

equivalently, A(f,r)=0holds for all r€(0,1), i.e., f is constant.
For the remaining part of (i), we may assume that f is not a constant map. Due to
lim,_,1 v, (7) = 00, we obtain

hm/q)Aﬁftdya /‘PAﬁftha()
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So, an application of L'Hopital’s rule yields

Jo ®ap(f t)dpa(t)
sup A ,r)=lim d
S Aep U =T )
ap(fr)r(=r?)«
=i r(1—r2)x =®apf1)

(ii) Under —1 <a < oo, we have

r—1

limv,(r)=v,(1) and hm/ D4 p(f,t)dpalt) / D p(f,t)dpa(t).

Thus, by Theorem 2.1 it follows that for r€ (0,1),

Awp(frr) <limAqp(f,s) = [va(1)] /©Aﬁ (ft)dpa(t) = Sl(zli)AaMf 5)-

The equality case just follows from a straightforward computation and Theorem 2.1.

(iil) Suppose —1 < a1 <ap < oo and Ay, g(f,1) < oo, then integrating by parts twice, we
obtain

Aacz,,B<f/1) V(Xz / CDA[% fi’ d}”az( )
=l 0] [ A= ] [, ()]
(v (0] = [ ( /O /O @A,ﬁ(f,t)dyal<t))d<1—r2)“rm}
§[va2(1)]_1A,Xl,ﬁ(f,1)/olval(r)d[—(1_r2)azuq]
1
A1) [t (] ' [ (1=, (7]

=Aa,6(f,1),

thereby establishing A, 5(f,1) < As, g(f,1). If this last inequality becomes an equality,
then the above argument forces

|| s D, (0= Aas s (£ D (1), Vre(01),
whence yielding (via the just-verified (ii))

= constant, when <1,
| linear map, when B=1.

Thus, we complete the proof. O
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2.3 Monotonic growth of L, 4(f,-)

Correspondingly, we first have the following Schwarz type lemma.

Proposition 2.2. Let —co<a <00, 0<B<1, and f€H(ID) be of the form f(z)=ao+Y >, axz"
with n €IN. Then

(2n)1’5[|f(2,(0)’] <Lus(Fr)] va(7) vre(0,1),

fortnﬁdﬂw(t)]’
with equality when and only when f=a¢+a,z".
Proof. This follows from Lemma 2.1(ii) and its equality case. O

The coming-up-next monotonicity contains a hypothesis stronger than that for Theo-
rem 2.1.

Theorem 2.2. Let —co<a<o0o,0<B<1,and feU(D) or f(z)=ag+a,z" with n €IN. Then
Lo g(f,7) is strictly increasing on (0,1) unless

= constant, when B<1,
| linear map, when B=1.

Consequently,
(i)
' [o, when B<1,
}%La,ﬁg-/r)_{ I£'(0)|, when B=1.
(ii) If

D p(f,0):=lim®; g(f,r) and Ppg(f,1):=LEmd;g(f,r)<co,
r—0 r—1

then
L —-L
O<r<s<1$0§ D"/S(f’s) Dé,ﬁ(f/r)
logus (s) —loga (1)

<PLp(f,5)—Prp(f.0)
with equality if and only if

= constant,  when B<1,
| linear map, when B=1.

In particular, t— L, g(f,t) is Lipschitz with respect to logu, (t) for t€ (0,1).
Proof. Similar to that for Theorem 2.1, but this time by Lemma 2.2(ii). O

Naturally, we can establish the so-called "norm” estimate associated to ®; 4(f,-).
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Corollary 2.2. Let0<p<1and feU(D) or f(z)=ap+a,z" withneN,
(1) If —co << —1, then

1 r
| @up(fdua(t)= sup [ @up(fdpa(t) <eo
0 re(0,1)70

if and only if f is constant. Moreover, sup, ¢ 1)La,s(f,7) =Prp(f,1).
(i) If —1 <a < oo, then

Las(f,r) <Lap(f,1):= sup Lap(f,s), Vre(0,1),
s€(0,1)

where the inequality becomes an equality for all r € (0,1) if and only if

f=

constant, when <1,
linear map, when f=1.

(iii) &> Lo g(f,1) is strictly decreasing on (—1,00) unless

f constant,  when <1,
| linear map, when B=1.

Proof. The argument is similar to that for Corollary 2.1, but via Lemma 2.2(ii). O

3 Logarithmic convexity

In this section, we treat the convexities of the following two functions: logr—logA, s(f,7)
and logr+—logL, g(f,r) for r€(0,1).

3.1 Two more lemmas
The following are two technical preliminaries.

Lemma 3.1 (see [10]). Suppose that f(x) and {h(x)}{2, are positive and twice differentiable
for x € (0,1) such that the function H(x) =332 ohx(x) is also twice differentiable for x € (0,1).
Then:

(i) logx s log f(x) is convex if and only if logx s log f (x?) is convex.
(ii) The function logx — log f(x) is convex if and only if the D-notation of f

D(f(x))::fjf/((;))+x(ff/((§))>/zo, Vxe (0,1).

(iii) If for each k the function logx — loghy(x) is convex, then logx —log H (x) is also convex.
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Lemma 3.2. Let f € H(ID). Then f belongs to U(ID) provided that one of the following two
conditions is valid:

(i) see [7] or [1, Lemma 2.1]

Zf/
F0)=f'(0)-1=0 and ‘ 1‘<1 VzeD.

(ii) see [6, Theorem 1] or [3, Theorem 8.12]

(5 -HEL  <x0-bpr, wen

3.2 Log-convexity for A, 5(f,-)
Such a property is given below.

Theorem 3.1. Let 0<<1and 0<r<1.

(i) If a € (—00,—3), then there exist two maps f,g € H(ID) such that logr — logA, g(f,r) is not
convex and logr—logA, s(g,r) is not concave.

(ii) If a € [=3,0], then logr—1ogAs1(a,z",r) is convex for a, #0 with n € N. Consequently,

logr—logAy1(f,r)

is convex for all f € U(D).
(iii) If w € (0,00), then logri—logA, g(anz",r) is not convex for a, #0 and n €IN.

Proof. The key issue is to check whether or not logr—logA, s(z",r) is convex for r€ (0,1).
To see this, let us borrow some symbols from [10]. For A >0 and 0 <x <1, we define

fA(x):/oxt)‘(l—t)”‘dt

and

LA ROV A® L (A
20 =gy (Em) e GEe) )

Given n€N. A simple calculation shows ®, 4(z",t) = 7' ~Ft2("~F) and then a change of
variable derives

forCDA,ﬁ(ant)d}”a(t):”l_ﬁforztn_ﬁ —t)"‘dt [fn ( )}

AN =T Tty 7o)

In accordance with Lemma 3.1(i)-(ii), it is easy to work out that logr +logA, g(z",r) is
convex for r € (0,1) if and only if A(n—p,x) >0 for any x € (0,1).
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(i) Under a € (—o0,—3), we follow the argument for [10, Proposition 6] to get

AMla+1)(A+2+«)
(a+2)2(a+3)

imA(A,x) =
x—1

Choosing
_ w_ | z when B<1,
flz)=2"= { z2, when B=1,
and A =n—p, we find lim,_,1A(A,x) <0, whence deriving that logr+— log A, (f,r) is not
convex.
In the meantime, picking n € N such that n > f—(2+4«) and putting g(z) =z", we

obtain
(n—pB)(a+1)(n—p+2+«)

(x+2)2(2+3)

whence deriving that logr+—1logA, 4(g,7) is not concave.

limA(n—B,x)= >0,
x—1

(i) Under a € [—3,0], we handle the two situations.
Situation 1: f € U(ID). Upon writing f(z) =Y _5_a,2", we compute

® 40 (F(2),0) = (A2) LA = Y nlan PO,
n=0

and consequently,

o Ynom|an lzfor(”tz)_lA(ant)dﬂrx (t
N vy (1)

) o)
Aw1(fr) =Y nla,*Au1("1).
n=0

So, by Lemma 3.1(iii), we see that the convexity of
logr—1logA,1(f,r) under feU(DD),
follows from the convexity of
logr—logA,1(z",r) under n€N.

So, it remains to verify this last convexity via the coming-up-next consideration.
Situation 2: f(z) =a,z" with a, #0. Three cases are required to control.
Case 1: a=0. An easy computation shows

Ao (Z"r)= n~1p20n=1)
and so logr—logAg1(z",r) is convex.
Case 2: —2 <a <0. Under this condition, we see from the arguments for [10, Proposi-
tions 4-5] that
An—1,x)>0, Vn—1>0, 0<x<1,
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and so that logr—logA, 1(z",r) is convex.

Case 3: —3 <a < —2. With the assumption, we also get from the arguments for [10,
Propositions 4-5] that

An—1,x)>A(—2—a,x)>0, Vxe(0,1), n—1€[-2—a,0),

and so that logr — logA, 1(z",r) is convex when n > 2. Here it is worth noting that the
convexity of logri—1logA, 1(z,r) =0 is trivial.

(iii) Under 0 < &« < oo, from the argument for [10, Proposition 6] we know that A(n—
B,x) <0 as x is sufficiently close to 1. Thus logr — logA, g(a,z",r) is not convex under
a, #0. O

The following illustrates that the function logr — logA, g(f,) is not always concave
fora>0,0<p<1,and feU(D).

Example 3.1. Leta=1, {0,1} and f(z)=z+z?/2. Then the function logr—logA, g(f,7)
is neither convex nor concave for r € (0,1).

Proof. A direct computation shows

‘ Zf/

zz(l-l-z)_l‘_ |z|?

= <1,
‘ ‘ (z+%)2 |z+2]2

since

|z] <1<2—|z|<|z+2|, VzeD.
So, f € U(ID) owing to Lemma 3.2(i). By f'(z) =z+1 we have

A(f/f)z/tD\z—i—l]sz(z):n<t2+§),

plus
7 8
r E(T’ —g—z>, when ’B—O,
[ @aplfbdmn=4 2% 3,
0 r- when =1
4 6’
Meanwhile,
r 1,4
1/1(1’):/ (1-2)d = -
0 2
So, we get
2 44,6
mt(12r 4r2 3r ), when B0,
Avs(fr) = 12(2—12)
R 12312 —2r*

6(27—1’2), when ‘321,
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and in turn consider the logarithmic convexities of the following function

12— 2% 323
%, when B=0,
=1 10 gy a2 when f1
2_x 4 - s

for x€(0,1).
Using the so-called D-notation in Lemma 3.1, we have

[ D(12x—4x*>—3x3)—D(2—x), when B=0,
D(hﬁ(x))_{ D(12—3x—2x2)—D(2—x), when B=1,

for x€ (0,1). By an elementary calculation, we get

( 48— 144x+12x2
D(12x—4x% —323) = ,
(123 =" =3) =~ —32)2

(2—x)?’
36— 96x+6x2
D(12—3x—222) = .
(12=8x=22%) = 35 02y

Consequently,
28(%) B
(12_4x—3x2)2(2_x)2/ when IB_O,
D(hp(x)) = ,
85(%) when =1
(12—3x—2x2)2(2—x)?’ ,
where

(x)= 48 —288x+232x%2 —72x3+15x*, when =0,
8BV)TN 72-192x+147x2 —48x°+7x%,  when B=1.

Now, under x € (0,1) we find
g (x) = —288-+464x—216x* +60x> and g (x)=464—432x+180x>.

Clearly, g((x) is an open-upward parabola with the axis of symmetry x =6/5>1. By
g0 (1) =212>0 and the monotonicity of gj on (0,1), we have g{(x) >0 for all x € (0,1).
Thus g, is increasing on (0,1). The following condition

¢h(0)=—-288<0 and g}(1)=20>0

yields an x7 € (0,1) such that g;(x) <0 for x € (0,x1) and gj(x) >0 for x € (x1,1). Since
20(0) =48 and go(1) =—65, there exists an xp € (0,1) such that go(x) >0 for x € (0,x9) and
go(x) <0 for x € (xo,1). Thus the function logx— loghg(x) is neither convex nor concave.
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Similarly, under x € (0,1) we have
g1(x)=—192+294x—144x> +28x> and g (x)=294—288x+84x%,

Obviously, g7 (x) is an open-upward parabola with the axis of symmetry x=12/7>1. By
g7(1)=90> 0 and the monotonicity of ¢ on (0,1), we have g/ (x) >0 for all x € (0,1).
Thus g} is increasing on (0,1). The following condition

¢1(0)=-192<0 and ¢j(1)=-14<0

yields g7 (x) <0 for x€(0,1). Since g1 (0)=72 and g1 (1)=—14, there exists an xo€(0,1) such
that g1 (x) >0 for x€(0,x0) and g1 (x) <0 for x € (xo,1). Thus the function logx+—logh; (x)
is neither convex nor concave. O

3.3 Log-convexity for L, g(f,-)

Analogously, we can establish the expected convexity for the mixed lengths.

Theorem 3.2. Let 0<<1and 0<r<1.

(i) If « € (—00,—3), then there exist two maps f,g € H(ID) such that logr—logL, s(f,r) is not
convex and logr—logl, g(g,7) is not concave.

(ii) If w € [—3,0], then logr —logLe1(a,z",r) is convex for a, #0 with n € N. Consequently,
logr—logL,1(f,r) is convex for f € U(D).

(iii) If w € (0,00), then logri— logL, g(anz",r) is not convex for a, #0 and n € N.

Proof. The argument is similar to that for Theorem 3.1 except using the following state-

ment for a € [—3,0]-If f€U(ID), then there exists g(z) =Y, ,bnz" such that g is the square
root of the zero-free derivative f' on ID and f'(0) = ¢?(0), and hence

@u1(£,0) = @rt) " [ 1F @Izl = @) [ gzl = X P

n=0

Thus, we complete the proof. O

Our concluding example shows that under 0 <a <o and 0 < <1 one cannot get that
loglL,g(f,r) is convex or concave in logr for all functions f € U (D).

Example 3.2. Leta=1, {0,1} and f(z)=(z+2)>. Then the function logr—logL, s(f,r)
is neither convex nor concave for r € (0,1).

Proof. Clearly, we have

f'(z)=3(z+2)* and f"(z)=6(z+2)
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as well as the Schwarizian derivative
[f”(Z)}/_l[f”(Z)r: —4
flz)d 2Lf(2) (z+2)*

It is easy to see that
V2(1—|z?) <2—]z|, VzeD.

So,

1@V 122 4 4 2
e —2lre |- mrer s mme <o
By Lemma 3.2(ii), f belongs to U(ID). Consequently,

27 .
L(f,t):/o F (1) d0 = 672t (£2 +4)

and s 3 1
’ 12n(§r3—5r5—§r7), when =0,
| @Lp(rndm(n = )
0 121’2—§r4—r6, when B=1.

Note that v1(r) =r2—1*/2. So,

2477(140r — 631> —15¢°)

’ h :O/

Lip(fir) = 105(2-12) when P
o 724_9?2_21’4 when =1
272 —

17

To gain our conclusion, we only need to consider the logarithmic convexity of the func-

tion 3 5
140x —63x° —15
X 2_3;2 X , when B=0,
hﬁ(x): 2
24 —9x—2x when B=1
2—x -

Case 1: =0. Applying the definition of D-notation, we obtain

—35280x — 33600 +3780x°
(140 —63x2 —15x4)2

D(140x —63x> —15x°) =

and
—8x

D(Z—xz):7(2_x2)2,

whence reaching

4xgo(x)

D (ho(x)) =D(140x—63x> —15x°) = D(2—x*) =

(140 —63x2 —15x%)2(2—x2)2’
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where
g0(x) =3920—33600x> +-28098x* —8400x° 413958,

Obviously,
20(0)=3920>0 and go(1)=-8587<0.

2, we get

Now letting s =x
90(x) = Go(s) =3920—33600s +28098s* — 8400s> +1395s*,
and
Go(s) = —33600+56196s —25200s> +-5580s> and  Gf (s) = 56196 —50400s +16740s>.

Since the axis of symmetry of Gjj is s =140/93 > 1, Gjj is decreasing on (0,1). Due to
G{(1)=22536>0, we have G{j(s) >0 for all s€ (0,1), i.e., G(s) is increasing on (0,1). By

G4(0)=—33600<0 and Gj(1)=2976>0,

we conclude that there exists an so € (0,1) such that Gjj(s) <0 for s € (0,s9) and G{(s) >0
for s € (so,1). Then there exists an xp € (0,1) such that gy(x) is decreasing for x € (0,xp)
and go(x) is increasing for x € (xp,1). Thus there exists an x7 € (0,1) such that go(x) >0
for x € (0,x1) and go(x) <0 for x € (x1,1). As a result, we find that logr+— logL.o(f,r) is
neither concave nor convex.

Case 2: f=1. Again using the D-notation, we obtain

—216—192x+18x2

D(24—9x—2x%) = 21 ox 227

and 5
D(2—x)= L
whence deriving
2 2¢1(x)
D(hi(x)) =D(24—9x—2x*)—D(2—x) =

(24—9x—2x2)2(2—x)?’

where
g1(x) =144 —384x+297x* —96x° +13x*.

Now we have
g1 (x)=—384-+594x —288x> +52x°> and g} (x)=594—576x+156x>.

Since the axis of symmetry of g7 (x) is x=24/13>1, g/ (x) is decreasing on (0,1). Due to
g7(1)=174>0, we have g/ (x) >0 for all x€ (0,1), i.e., g} () is increasing on (0,1). By

¢1(0)=-384<0 and ¢j(1)=-26<0,
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we conclude that g} (x) <0 for x € (0,1). Obviously,
€1(0)=144>0 and g;(1)=-26<0.

Hence there exists an xp€(0,1) such that g1 (x) >0 for x€ (0,x() and g3 (x) <0 for x€ (xp,1).
Consequently, we find that logr+—logL, g—1(f,7) is neither concave nor convex. O
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