Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings

Jie Xiao ${ }^{1, *}$ and Wen Xu ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, Memorial University, NL A1C 5S7, Canada
${ }^{2}$ Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland

Received 31 October 2013; Accepted (in revised version) 1 March 2014
Available online 31 March 2014

Abstract

This note addresses monotonic growths and logarithmic convexities of the weighted $\left(\left(1-t^{2}\right)^{\alpha} d t^{2},-\infty<\alpha<\infty, 0<t<1\right)$ integral means $\mathrm{A}_{\alpha, \beta}(f, \cdot)$ and $\mathrm{L}_{\alpha, \beta}(f, \cdot)$ of the mixed area $\left(\pi r^{2}\right)^{-\beta} A(f, r)$ and the mixed length $(2 \pi r)^{-\beta} L(f, r)(0 \leq \beta \leq 1$ and $0<r<1$) of $f(r \mathbb{D})$ and $\partial f(r \mathbb{D})$ under a holomorphic map f from the unit disk \mathbb{D} into the finite complex plane \mathbb{C}.

Key Words: Monotonic growth, logarithmic convexity, mean mixed area, mean mixed length, isoperimetric inequality, holomorphic map, univalent function.

AMS Subject Classifications: 32A10, 32A36, 51M25

1 Introduction

From now on, \mathbb{D} represents the unit disk in the finite complex plane $\mathbb{C}, H(\mathbb{D})$ denotes the space of holomorphic mappings $f: \mathbb{D} \rightarrow \mathbb{C}$, and $U(\mathbb{D})$ stands for all univalent functions in $H(\mathbb{D})$. For any real number α, positive number $r \in(0,1)$ and the standard area measure $d A$, let

$$
d A_{\alpha}(z)=\left(1-|z|^{2}\right)^{\alpha} d A(z), \quad r \mathbb{D}=\{z \in \mathbb{D}:|z|<r\}, \quad r \mathbb{T}=\{z \in \mathbb{D}:|z|=r\} .
$$

In their recent paper [11], Xiao and Zhu have discussed the following area $0<p<\infty$ integral mean of $f \in H(\mathbb{D})$:

$$
M_{p, \alpha}(f, r)=\left[\frac{1}{A_{\alpha}(r \mathbb{D})} \int_{r \mathbb{D}}|f|^{p} d A_{\alpha}\right]^{\frac{1}{p}},
$$

[^0]proving that $r \mapsto M_{p, \alpha}(f, r)$ is strictly increasing unless f is a constant, and $\log r \mapsto$ $\log M_{p, \alpha}(f, r)$ is not always convex. This last result suggests such a conjecture that $\log r \mapsto \log M_{p, \alpha}(f, r)$ is convex or concave when $\alpha \leq 0$ or $\alpha>0$. But, motivated by [11, Example 10, (ii)] we can choose $p=2, \alpha=1, f(z)=z+c$ and $c>0$ to verify that the conjecture is not true. At the same time, this negative result was also obtained in Wang-Zhu's manuscript [10]. So far it is unknown whether the conjecture is generally true for $p \neq 2-$ see [9] for a recent development.

The foregoing observation has actually inspired the following investigation. Our concentration is the fundamental case $p=1$. To understand this new approach, let us take a look at $M_{1, \alpha}(\cdot, \cdot)$ from a differential geometric viewpoint. Note that

$$
M_{1, \alpha}\left(f^{\prime}, r\right)=\frac{\int_{r \mathbb{D}}\left|f^{\prime}\right| d A_{\alpha}}{A_{\alpha}(r \mathbb{D})}=\frac{\int_{0}^{r}\left[(2 \pi t)^{-1} \int_{t \mathbb{T}}\left|f^{\prime}(z)\right||d z|\right]\left(1-t^{2}\right)^{\alpha} d t^{2}}{\int_{0}^{r}\left(1-t^{2}\right)^{\alpha} d t^{2}} .
$$

So, if $f \in U(\mathbb{D})$, then

$$
(2 \pi t)^{-1} \int_{t \mathbb{T}}\left|f^{\prime}(z)\right||d z|
$$

is a kind of mean of the length of $\partial f(t \mathbb{D})$, and hence the square of this mean dominates a sort of mean of the area of $f(t \mathbb{D})$ in the isoperimetric sense:

$$
\Phi_{A}(f, t)=\left(\pi t^{2}\right)^{-1} \int_{t \mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z) \leq\left[(2 \pi t)^{-1} \int_{t \mathbb{T}}\left|f^{\prime}(z)\right||d z|\right]^{2}=\left[\Phi_{L}(f, t)\right]^{2} .
$$

In accordance with the well-known Pólya-Szegö monotone principle [8, Problem 309] (or [2, Proposition 6.1]) and the area Schwarz's lemma in Burckel, Marshall, Minda, Poggi-Corradini and Ransford [2, Theorem 1.9], $\Phi_{L}(f, \cdot)$ and $\Phi_{A}(f, \cdot)$ are strictly increasing on $(0,1)$ unless $f(z)=a_{1} z$ with $a_{1} \neq 0$. Furthermore, $\log \Phi_{L}(f, r)$ and $\log \Phi_{A}(f, r)$, equivalently, $\log L(f, r)$ and $\log A(f, r)$, are convex functions of $\log r$ for $r \in(0,1)$, due to the classical Hardy's convexity and [2, Section 5]. Perhaps, it is worthwhile to mention that if $c>0$ is small enough then the universal cover of \mathbb{D} onto the annulus $\left\{e^{-c \pi / 2}<|z|<e^{c \pi / 2}\right\}$:

$$
f(z)=\exp \left[i c \log \left(\frac{1+z}{1-z}\right)\right]
$$

enjoys the property that $\log r \mapsto \log A(f, r)$ is not convex; see [2, Example 5.1].
In the above and below, we have used the following convention:

$$
\Phi_{A}(f, r)=\frac{A(f, r)}{\pi r^{2}} \quad \text { and } \quad \Phi_{L}(f, r)=\frac{L(f, r)}{2 \pi r},
$$

where under $r \in(0,1)$ and $f \in H(\mathbb{D}), A(f, r)$ and $L(f, r)$ stand respectively for the area of $f(r \mathbb{D})$ (the projection of the Riemannian image of $r \mathbb{D}$ by f) and the length of $\partial f(r \mathbb{D})$ (the boundary of the projection of the Riemannian image of $r \mathbb{D}$ by f) with respect to the standard Euclidean metric on C. For our purpose, we choose a shortcut notation

$$
d \mu_{\alpha}(t)=\left(1-t^{2}\right)^{\alpha} d t^{2} \quad \text { and } \quad v_{\alpha}(t)=\mu_{\alpha}([0, t]), \quad \forall t \in(0,1),
$$

and for $0 \leq \beta \leq 1$ define

$$
\Phi_{A, \beta}(f, t)=\frac{A(f, t)}{\left(\pi t^{2}\right)^{\beta}} \quad \text { and } \quad \Phi_{L, \beta}(f, t)=\frac{L(f, t)}{(2 \pi t)^{\beta}},
$$

and then introduce two natural analytic-geometric quantities

$$
\mathrm{A}_{\alpha, \beta}(f, r)=\frac{\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)}{\int_{0}^{r} d \mu_{\alpha}(t)} \quad \text { and } \quad \mathrm{L}_{\alpha, \beta}(f, r)=\frac{\int_{0}^{r} \Phi_{L, \beta}(f, t) d \mu_{\alpha}(t)}{\int_{0}^{r} d \mu_{\alpha}(t)},
$$

which are respectively called the weighted integral means of the mixed area and the mixed length for $f(r \mathbb{D})$ and $\partial f(r \mathbb{D})$.

In this note, we consider two fundamental properties: monotonic growths and logarithmic convexities of both $\mathrm{A}_{\alpha, \beta}(f, r)$ and $\mathrm{L}_{\alpha, \beta}(f, r)$, thereby giving two applications: (i) if $r \mapsto \Phi_{L}(f, r)$ is monotone increasing on $(0,1)$, then so is the isoperimetry-induced function:

$$
r \mapsto \frac{\int_{0}^{r}\left[\Phi_{L, 1}(f, t)\right]^{2} d \mu_{\alpha}(t)}{\int_{0}^{r} d \mu_{\alpha}(t)} \geq \mathrm{A}_{\alpha, 1}(f, r) ;
$$

(ii) the log-convexity for $\mathrm{L}_{\alpha, 1}(f, r)$ essentially settles the above-mentioned conjecture. The non-trivial details (results and their proofs) are arranged in the forthcoming two sections.

2 Monotonic growth

In this section, we deal with the monotonic growths of $\mathrm{A}_{\alpha, \beta}(f, r)$ and $\mathrm{L}_{\alpha, \beta}(f, r)$, along with their associated Schwarz type lemmas. In what follows, \mathbb{N} is used as the set of all natural numbers.

2.1 Two lemmas

The following two preliminary results are needed.
Lemma 2.1 (see [5]). Let $f \in H(\mathbb{D})$ be of the form $f(z)=a_{0}+\sum_{k=n}^{\infty} a_{k} z^{k}$ with $n \in \mathbb{N}$. Then:
(i) $\pi r^{2 n}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right]^{2} \leq A(f, r), \quad \forall r \in(0,1)$.
(ii) $2 \pi r^{n}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right] \leq L(f, r), \quad \forall r \in(0,1)$.

Moreover, equality in (i) or (ii) holds if and only if $f(z)=a_{0}+a_{n} z^{n}$.
Proof. This may be viewed as the higher order Schwarz type lemma for area and length. See also the proofs of Theorems 1 and 2 in [5], and their immediate remarks on equalities. Here it is worth noticing three matters: (a) $f^{(n)}(0) / n$! is just a_{n}; (b) [4, Corollary 3] presents a different argument for the area case; (c) $L(f, r)$ is greater than or equal to the length $l(r, f)$ of the outer boundary of $f(r \mathbb{D})$ (defined in [5]) which is not less than the length $l^{\#}(r, f)$ of the exact outer boundary of $f(r \mathbb{D})$ (introduced in [12]).

Lemma 2.2. Let $0 \leq \beta \leq 1$.
(i) If $f \in H(\mathbb{D})$, then $r \mapsto \Phi_{A, \beta}(f, r)$ is strictly increasing on $(0,1)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

(ii) If $f \in U(\mathbb{D})$ or $f(z)=a_{0}+a_{n} z^{n}$ with $n \in \mathbb{N}$, then $r \mapsto \Phi_{L, \beta}(f, r)$ is strictly increasing on $(0,1)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Proof. It is enough to handle $\beta<1$ since the case $\beta=1$ has been treated in [2, Theorem 1.9 and Proposition 6.1]. The monotonic growths in (i) and (ii) follow from

$$
\Phi_{A, \beta}(f, r)=\left(\pi r^{2}\right)^{1-\beta} \Phi_{A, 1}(f, r) \quad \text { and } \quad L(f, r)=(2 \pi r)^{1-\beta} \Phi_{L, 1}(f, r) .
$$

To see the strictness, we consider two cases.
(i) Suppose that $\Phi_{A, \beta}(f, \cdot)$ is not strictly increasing. Then there are $r_{1}, r_{2} \in(0,1)$ such that $r_{1}<r_{2}$, and $\Phi_{A, \beta}(f, \cdot)$ is a constant on $\left[r_{1}, r_{2}\right]$. Hence

$$
\frac{d}{d r} \Phi_{A, \beta}(f, r)=0, \quad \forall r \in\left[r_{1}, r_{2}\right] .
$$

Equivalently,

$$
2 \beta A(f, r)=r \frac{d}{d r} A(f, r), \quad \forall r \in\left[r_{1}, r_{2}\right]
$$

But, according to [2, (4.2)],

$$
2 A(f, r) \leq r \frac{d}{d r} A(f, r), \quad \forall r \in(0,1)
$$

Since $\beta<1$, we get $A(f, r)=0$ for all $r \in\left[r_{1}, r_{2}\right]$, whence finding that f is constant.
(ii) Now assume that $\Phi_{L, \beta}(f, \cdot)$ is not strictly increasing. There are $r_{3}, r_{4} \in(0,1)$ such that $r_{3}<r_{4}$ and

$$
0=\frac{d}{d r} \Phi_{L, \beta}(f, r)=(2 \pi r)^{-\beta}\left[\frac{d}{d r} L(f, r)-\frac{\beta}{r} L(f, r)\right]=0, \quad \forall r \in\left[r_{3}, r_{4}\right] .
$$

If $f \in U(\mathbb{D})$, then

$$
L(f, r)=\int_{r \mathbb{T}}\left|f^{\prime}(z)\right||d z|
$$

and hence one has the following "first variation formula"

$$
\frac{d}{d r} L(f, r)=\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta+r \frac{d}{d r} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta, \quad \forall r \in\left[r_{3}, r_{4}\right] .
$$

The previous three equations yield

$$
0=(1-\beta) \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta+r \frac{d}{d r} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta, \quad \forall r \in\left[r_{3}, r_{4}\right],
$$

and so

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta=0, \quad \forall r \in\left[r_{3}, r_{4}\right] .
$$

This ensures that f is a constant, contradicting $f \in U(\mathbb{D})$. Therefore, $f(z)$ is of the form $a_{0}+a_{n} z^{n}$. But, since $L\left(z^{n}, r\right)=2 \pi r^{n}$ is strictly increasing, f must be constant.

2.2 Monotonic growth of $\mathrm{A}_{\alpha, \beta}(f, \cdot)$

This aspect is essentially motivated by the following Schwarz type lemma.
Proposition 2.1. Let $-\infty<\alpha<\infty, 0 \leq \beta \leq 1$, and $f \in H(\mathbb{D})$ be of the form $f(z)=a_{0}+\sum_{k=n}^{\infty} a_{k} z^{k}$ with $n \in \mathbb{N}$. Then

$$
\pi^{1-\beta}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right]^{2} \leq \mathrm{A}_{\alpha, \beta}(f, r)\left[\frac{v_{\alpha}(r)}{\int_{0}^{r} t^{2(n-\beta)} d \mu_{\alpha}(t)}\right], \quad \forall r \in(0,1)
$$

with equality if and only if $f(z)=a_{0}+a_{n} z^{n}$.
Proof. The inequality follows from Lemma 2.1(i) right away. When $f(z)=a_{0}+a_{n} z^{n}$, the last inequality becomes an equality due to the equality case of Lemma 2.1(i). Conversely, suppose that the last inequality is an equality. If f does not have the form $a_{0}+a_{n} z^{n}$, then the equality in Lemma 2.1(i) is not true, then there are $r_{1}, r_{2} \in(0,1)$ such that $r_{1}<r_{2}$ and

$$
A(f, t)>\pi t^{2 n}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right]^{2}, \quad \forall t \in\left[r_{1}, r_{2}\right] .
$$

This strict inequality forces that for $r \in\left[r_{1}, r_{2}\right]$,

$$
\begin{aligned}
& \pi^{1-\beta}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right]^{2} \int_{0}^{r} t^{2(n-\beta)} d \mu_{\alpha}(t) \\
= & \int_{0}^{r}\left(\pi t^{2}\right)^{-\beta} A(f, t) d \mu_{\alpha}(t)=\left(\int_{0}^{r_{1}}+\int_{r_{1}}^{r_{2}}+\int_{r_{2}}^{r}\right)\left(\pi t^{2}\right)^{-\beta} A(f, t) d \mu_{\alpha}(t) \\
> & \pi^{1-\beta}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right]^{2} \int_{0}^{r} t^{2(n-\beta)} d \mu_{\alpha}(t),
\end{aligned}
$$

a contradiction. Thus $f(z)=a_{0}+a_{n} z^{n}$.
Based on Proposition 2.1, we find the monotonic growth for $\mathrm{A}_{\alpha, \beta}(\cdot, \cdot)$ as follows.

Theorem 2.1. Let $-\infty<\alpha<\infty, 0 \leq \beta \leq 1$, and $f \in H(\mathbb{D})$. Then $r \mapsto \mathrm{~A}_{\alpha, \beta}(f, r)$ is strictly increasing on $(0,1)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Consequently,
(i)

$$
\lim _{r \rightarrow 0} \mathrm{~A}_{\alpha, \beta}(f, r)= \begin{cases}0, & \text { when } \beta<1, \\ \left|f^{\prime}(0)\right|^{2}, & \text { when } \beta=1 .\end{cases}
$$

(ii) If

$$
\Phi_{A, \beta}(f, 0):=\lim _{r \rightarrow 0} \Phi_{A, \beta}(f, r) \quad \text { and } \quad \Phi_{A, \beta}(f, 1):=\lim _{r \rightarrow 1} \Phi_{A, \beta}(f, r)<\infty,
$$

then

$$
0<r<s<1 \Rightarrow 0 \leq \frac{\mathrm{A}_{\alpha, \beta}(f, s)-\mathrm{A}_{\alpha, \beta}(f, r)}{\log v_{\alpha}(s)-\log v_{\alpha}(r)} \leq \Phi_{A, \beta}(f, s)-\Phi_{A, \beta}(f, 0)
$$

with equality if and only if

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

In particular, $t \mapsto \mathrm{~A}_{\alpha, \beta}(f, t)$ is Lipschitz with respect to $\log v_{\alpha}(t)$ for $t \in(0,1)$.
Proof. Note that $v_{\alpha}(r)=\int_{0}^{r} d \mu_{\alpha}(t)$. So $d v_{\alpha}(r)$, the differential of $v_{\alpha}(r)$ with respect to $r \in$ $(0,1)$, equals $d \mu_{\alpha}(r)$. By integration by parts we have

$$
\Phi_{A, \beta}(f, r) v_{\alpha}(r)-\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\int_{0}^{r}\left[\frac{d}{d t} \Phi_{A, \beta}(f, t)\right] v_{\alpha}(t) d t .
$$

Differentiating the function $\mathrm{A}_{\alpha, \beta}(f, r)$ with respect to r and using Lemma 2.2(i), we get

$$
\begin{aligned}
\frac{d}{d r} \mathrm{~A}_{\alpha, \beta}(f, r) & =\frac{\Phi_{A, \beta}(f, r) 2 r\left(1-r^{2}\right)^{\alpha} v_{\alpha}(r)-\left[\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)\right] 2 r\left(1-r^{2}\right)^{\alpha}}{v_{\alpha}(r)^{2}} \\
& =\frac{2 r\left(1-r^{2}\right)^{\alpha}\left[\Phi_{A, \beta}(f, t) v_{\alpha}(r)-\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)\right]}{v_{\alpha}(r)^{2}} \\
& =\frac{2 r\left(1-r^{2}\right)^{\alpha} \int_{0}^{r}\left[\frac{d}{d t} \Phi_{A, \beta}(f, t)\right] v_{\alpha}(t) d t}{v_{\alpha}(r)^{2}} \geq 0 .
\end{aligned}
$$

As a result, $r \mapsto \mathrm{~A}_{\alpha, \beta}(f, r)$ increases on $(0,1)$.
Next suppose that the just-verified monotonicity is not strict. Then there exist two numbers $r_{1}, r_{2} \in(0,1)$ such that $r_{1}<r_{2}$ and

$$
\mathrm{A}_{\alpha, \beta}\left(f, r_{1}\right)=\mathrm{A}_{\alpha, \beta}(f, r)=\mathrm{A}_{\alpha, \beta}\left(f, r_{2}\right), \quad \forall r \in\left[r_{1}, r_{2}\right] .
$$

Consequently,

$$
\frac{d}{d r} \mathrm{~A}_{\alpha, \beta}(f, r)=0, \quad \forall r \in\left[r_{1}, r_{2}\right],
$$

and so

$$
\int_{0}^{r}\left[\frac{d}{d t} \Phi_{A, \beta}(f, t)\right] v_{\alpha}(t) d t=0, \quad \forall r \in\left[r_{1}, r_{2}\right] .
$$

Then we must have

$$
\frac{d}{d t} \Phi_{A, \beta}(f, t)=0, \quad \forall t \in(0, r), \quad \text { with } r \in\left[r_{1}, r_{2}\right],
$$

whence getting that if $\beta<1$ then f must be constant or if $\beta=1$ then f must be linear, thanks to the argument for the strictness in Lemma 2.2(i).

It remains to check the rest of Theorem 2.1.
(i) The monotonic growth of $\mathrm{A}_{\alpha, \beta}(f, \cdot)$ ensures the existence of the limit. An application of L'Hôpital's rule gives

$$
\lim _{r \rightarrow 0} \mathrm{~A}_{\alpha, \beta}(f, r)=\lim _{r \rightarrow 0} \Phi_{A, \beta}(f, r)= \begin{cases}0, & \text { when } \beta<1, \\ \left|f^{\prime}(0)\right|^{2}, & \text { when } \beta=1 .\end{cases}
$$

(ii) Again, the above monotonicity formula of $\mathrm{A}_{\alpha, \beta}(f, \cdot)$ plus the given condition yields that for $s \in(0,1)$,

$$
\sup _{r \in(0, s)} \mathrm{A}_{\alpha, \beta}(f, r)=\mathrm{A}_{\alpha, \beta}(f, s)<\infty
$$

Integrating by parts twice and using the monotonicity of $\Phi_{A, \beta}(f, \cdot)$, we obtain that under $0<r<s<1$,

$$
\begin{aligned}
0 & \leq \mathrm{A}_{\alpha, \beta}(f, s)-\mathrm{A}_{\alpha, \beta}(f, r)=\int_{r}^{s} \frac{d}{d t} \mathrm{~A}_{\alpha, \beta}(f, t) d t \\
& =\int_{r}^{s}\left(\int_{0}^{t}\left[\frac{d}{d \tau} \Phi_{A, \beta}(f, \tau)\right] v_{\alpha}(\tau) d \tau\right)\left[\frac{d v_{\alpha}(t)}{v_{\alpha}(t)^{2}}\right] \\
& =\int_{r}^{s}\left(v_{\alpha}(t) \Phi_{A, \beta}(f, t)-\int_{0}^{t} \Phi_{A, \beta}(f, \tau) d v_{\alpha}(\tau)\right)\left[\frac{d v_{\alpha}(t)}{v_{\alpha}(t)^{2}}\right] \\
& \leq\left[\Phi_{A, \beta}(f, s)-\Phi_{A, \beta}(f, 0)\right] \int_{r}^{s} \frac{d v_{\alpha}(t)}{v_{\alpha}(t)} .
\end{aligned}
$$

This gives the desired inequality right away. Furthermore, the above argument plus Lemma 2.2(i) derives the equality case.

As an immediate consequence of Theorem 2.1, we get a sort of "norm" estimate associated with $\Phi_{A, \beta}(f, \cdot)$.

Corollary 2.1. Let $-\infty<\alpha<\infty, 0 \leq \beta \leq 1$ and $f \in H(\mathbb{D})$.
(i) If $-\infty<\alpha \leq-1$, then

$$
\int_{0}^{1} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\sup _{r \in(0,1)} \int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)<\infty,
$$

if and only if f is constant. Moreover, $\sup _{r \in(0,1)} \mathrm{A}_{\alpha, \beta}(f, r)=\Phi_{A, \beta}(f, 1)$.
(ii) If $-1<\alpha<\infty$, then

$$
\mathrm{A}_{\alpha, \beta}(f, r) \leq \mathrm{A}_{\alpha, \beta}(f, 1):=\sup _{s \in(0,1)} \mathrm{A}_{\alpha, \beta}(f, s), \quad \forall r \in(0,1)
$$

where the inequality becomes an equality for all $r \in(0,1)$ if and only if

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1 \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

(iii) The following function $\alpha \mapsto \mathrm{A}_{\alpha, \beta}(f, 1)$ is strictly decreasing on $(-1, \infty)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Proof. (i) By Theorem 2.1, we have

$$
\mathrm{A}_{\alpha, \beta}(f, r) \leq \frac{\int_{0}^{s} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)}{v_{\alpha}(s)}, \quad \forall r \in(0, s) .
$$

Note that

$$
\lim _{s \rightarrow 1} v_{\alpha}(s)=\infty \quad \text { and } \quad \lim _{s \rightarrow 1} \int_{0}^{s} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\int_{0}^{1} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)
$$

So, the last integral is finite if and only if

$$
\Phi_{A, \beta}(f, r)=0, \quad \forall r \in(0,1),
$$

equivalently, $A(f, r)=0$ holds for all $r \in(0,1)$, i.e., f is constant.
For the remaining part of (i), we may assume that f is not a constant map. Due to $\lim _{r \rightarrow 1} v_{\alpha}(r)=\infty$, we obtain

$$
\lim _{r \rightarrow 1} \int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\int_{0}^{1} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\infty .
$$

So, an application of L'Hôpital's rule yields

$$
\begin{aligned}
\sup _{0<r<1} \mathrm{~A}_{\alpha, \beta}(f, r) & =\lim _{r \rightarrow 1} \frac{\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)}{v_{\alpha}(r)} \\
& =\lim _{r \rightarrow 1} \frac{\Phi_{A, \beta}(f, r) r\left(1-r^{2}\right)^{\alpha}}{r\left(1-r^{2}\right)^{\alpha}}=\Phi_{A, \beta}(f, 1)
\end{aligned}
$$

(ii) Under $-1<\alpha<\infty$, we have

$$
\lim _{r \rightarrow 1} v_{\alpha}(r)=v_{\alpha}(1) \quad \text { and } \quad \lim _{r \rightarrow 1} \int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\int_{0}^{1} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)
$$

Thus, by Theorem 2.1 it follows that for $r \in(0,1)$,

$$
\mathrm{A}_{\alpha, \beta}(f, r) \leq \lim _{s \rightarrow 1} \mathrm{~A}_{\alpha, \beta}(f, s)=\left[v_{\alpha}(1)\right]^{-1} \int_{0}^{1} \Phi_{A, \beta}(f, t) d \mu_{\alpha}(t)=\sup _{s \in(0,1)} \mathrm{A}_{\alpha, \beta}(f, s) .
$$

The equality case just follows from a straightforward computation and Theorem 2.1.
(iii) Suppose $-1<\alpha_{1}<\alpha_{2}<\infty$ and $\mathrm{A}_{\alpha_{1}, \beta}(f, 1)<\infty$, then integrating by parts twice, we obtain

$$
\begin{aligned}
\mathrm{A}_{\alpha_{2}, \beta}(f, 1) & =\left[v_{\alpha_{2}}(1)\right]^{-1} \int_{0}^{1} \Phi_{A, \beta}(f, r) d \mu_{\alpha_{2}}(r) \\
& =\left[v_{\alpha_{2}}(1)\right]^{-1} \int_{0}^{1}\left(1-r^{2}\right)^{\alpha_{2}-\alpha_{1}} \frac{d}{d r}\left[\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha_{1}}(t)\right] d r \\
& =\left[v_{\alpha_{2}}(1)\right]^{-1}\left[-\int_{0}^{1}\left(\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha_{1}}(t)\right) d\left(1-r^{2}\right)^{\alpha_{2}-\alpha_{1}}\right] \\
& \leq\left[v_{\alpha_{2}}(1)\right]^{-1} \mathrm{~A}_{\alpha_{1}, \beta}(f, 1) \int_{0}^{1} v_{\alpha_{1}}(r) d\left[-\left(1-r^{2}\right)^{\alpha_{2}-\alpha_{1}}\right] \\
& =\mathrm{A}_{\alpha_{1}, \beta}(f, 1)\left[v_{\alpha_{2}}(1)\right]^{-1}\left[\int_{0}^{1}\left(1-r^{2}\right)^{\alpha_{2}-\alpha_{1}} d \mu_{\alpha_{1}}(r)\right] \\
& =\mathrm{A}_{\alpha_{1}, \beta}(f, 1),
\end{aligned}
$$

thereby establishing $\mathrm{A}_{\alpha_{2}, \beta}(f, 1) \leq \mathrm{A}_{\alpha_{1}, \beta}(f, 1)$. If this last inequality becomes an equality, then the above argument forces

$$
\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{\alpha_{1}}(t)=\mathrm{A}_{\alpha_{1}, \beta}(f, 1) v_{\alpha_{1}}(r), \quad \forall r \in(0,1),
$$

whence yielding (via the just-verified (ii))

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Thus, we complete the proof.

2.3 Monotonic growth of $L_{\alpha, \beta}(f, \cdot)$

Correspondingly, we first have the following Schwarz type lemma.
Proposition 2.2. Let $-\infty<\alpha<\infty, 0 \leq \beta \leq 1$, and $f \in H(\mathbb{D})$ be of the form $f(z)=a_{0}+\sum_{k=n}^{\infty} a_{k} z^{k}$ with $n \in \mathbb{N}$. Then

$$
(2 \pi)^{1-\beta}\left[\frac{\left|f^{(n)}(0)\right|}{n!}\right] \leq \mathrm{L}_{\alpha, \beta}(f, r)\left[\frac{v_{\alpha}(r)}{\int_{0}^{r} t^{n-\beta} d \mu_{\alpha}(t)}\right], \quad \forall r \in(0,1)
$$

with equality when and only when $f=a_{0}+a_{n} z^{n}$.
Proof. This follows from Lemma 2.1(ii) and its equality case.
The coming-up-next monotonicity contains a hypothesis stronger than that for Theorem 2.1.

Theorem 2.2. Let $-\infty<\alpha<\infty, 0 \leq \beta \leq 1$, and $f \in U(\mathbb{D})$ or $f(z)=a_{0}+a_{n} z^{n}$ with $n \in \mathbb{N}$. Then $r \mapsto \mathrm{~L}_{\alpha, \beta}(f, r)$ is strictly increasing on $(0,1)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Consequently,
(i)

$$
\lim _{r \rightarrow 0} \mathrm{~L}_{\alpha, \beta}(f, r)= \begin{cases}0, & \text { when } \beta<1, \\ \left|f^{\prime}(0)\right|, & \text { when } \beta=1 .\end{cases}
$$

(ii) If

$$
\Phi_{L, \beta}(f, 0):=\lim _{r \rightarrow 0} \Phi_{L, \beta}(f, r) \quad \text { and } \quad \Phi_{L, \beta}(f, 1):=\lim _{r \rightarrow 1} \Phi_{L, \beta}(f, r)<\infty,
$$

then

$$
0<r<s<1 \Rightarrow 0 \leq \frac{\mathrm{L}_{\alpha, \beta}(f, s)-\mathrm{L}_{\alpha, \beta}(f, r)}{\log v_{\alpha}(s)-\log v_{\alpha}(r)} \leq \Phi_{L, \beta}(f, s)-\Phi_{L, \beta}(f, 0)
$$

with equality if and only if

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

In particular, $t \mapsto \mathrm{~L}_{\alpha, \beta}(f, t)$ is Lipschitz with respect to $\log v_{\alpha}(t)$ for $t \in(0,1)$.
Proof. Similar to that for Theorem 2.1, but this time by Lemma 2.2(ii).
Naturally, we can establish the so-called "norm" estimate associated to $\Phi_{L, \beta}(f, \cdot)$.

Corollary 2.2. Let $0 \leq \beta \leq 1$ and $f \in U(\mathbb{D})$ or $f(z)=a_{0}+a_{n} z^{n}$ with $n \in \mathbb{N}$,
(i) If $-\infty<\alpha \leq-1$, then

$$
\int_{0}^{1} \Phi_{L, \beta}(f, t) d \mu_{\alpha}(t)=\sup _{r \in(0,1)} \int_{0}^{r} \Phi_{L, \beta}(f, t) d \mu_{\alpha}(t)<\infty
$$

if and only if f is constant. Moreover, $\sup _{r \in(0,1)} \mathrm{L}_{\alpha, \beta}(f, r)=\Phi_{L, \beta}(f, 1)$.
(ii) If $-1<\alpha<\infty$, then

$$
\mathrm{L}_{\alpha, \beta}(f, r) \leq \mathrm{L}_{\alpha, \beta}(f, 1):=\sup _{s \in(0,1)} \mathrm{L}_{\alpha, \beta}(f, s), \quad \forall r \in(0,1),
$$

where the inequality becomes an equality for all $r \in(0,1)$ if and only if

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

(iii) $\alpha \mapsto \mathrm{L}_{\alpha, \beta}(f, 1)$ is strictly decreasing on $(-1, \infty)$ unless

$$
f= \begin{cases}\text { constant, } & \text { when } \beta<1, \\ \text { linear map, } & \text { when } \beta=1 .\end{cases}
$$

Proof. The argument is similar to that for Corollary 2.1, but via Lemma 2.2(ii).

3 Logarithmic convexity

In this section, we treat the convexities of the following two functions: $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(f, r)$ and $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta}(f, r)$ for $r \in(0,1)$.

3.1 Two more lemmas

The following are two technical preliminaries.
Lemma 3.1 (see [10]). Suppose that $f(x)$ and $\left\{h_{k}(x)\right\}_{k=0}^{\infty}$ are positive and twice differentiable for $x \in(0,1)$ such that the function $H(x)=\sum_{k=0}^{\infty} h_{k}(x)$ is also twice differentiable for $x \in(0,1)$. Then:
(i) $\log x \mapsto \log f(x)$ is convex if and only if $\log x \mapsto \log f\left(x^{2}\right)$ is convex.
(ii) The function $\log x \mapsto \log f(x)$ is convex if and only if the D-notation of f

$$
D(f(x)):=\frac{f^{\prime}(x)}{f(x)}+x\left(\frac{f^{\prime}(x)}{f(x)}\right)^{\prime} \geq 0, \quad \forall x \in(0,1) .
$$

(iii) If for each k the function $\log x \mapsto \log h_{k}(x)$ is convex, then $\log x \mapsto \log H(x)$ is also convex.

Lemma 3.2. Let $f \in H(\mathbb{D})$. Then f belongs to $U(\mathbb{D})$ provided that one of the following two conditions is valid:
(i) see [7] or [1, Lemma 2.1]

$$
f(0)=f^{\prime}(0)-1=0 \quad \text { and } \quad\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, \quad \forall z \in \mathbb{D} .
$$

(ii) see [6, Theorem 1] or [3, Theorem 8.12]

$$
\left|\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\prime}-\frac{1}{2}\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{2}\right| \leq 2\left(1-|z|^{2}\right)^{-2}, \quad \forall z \in \mathbb{D} .
$$

3.2 Log-convexity for $\mathrm{A}_{\alpha, \beta}(f, \cdot)$

Such a property is given below.
Theorem 3.1. Let $0 \leq \beta \leq 1$ and $0<r<1$.
(i) If $\alpha \in(-\infty,-3)$, then there exist two maps $f, g \in H(\mathbb{D})$ such that $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(f, r)$ is not convex and $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(g, r)$ is not concave.
(ii) If $\alpha \in[-3,0]$, then $\log r \mapsto \log \mathrm{~A}_{\alpha, 1}\left(a_{n} z^{n}, r\right)$ is convex for $a_{n} \neq 0$ with $n \in \mathbb{N}$. Consequently,

$$
\log r \mapsto \log \mathrm{~A}_{\alpha, 1}(f, r)
$$

is convex for all $f \in U(\mathbb{D})$.
(iii) If $\alpha \in(0, \infty)$, then $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}\left(a_{n} z^{n}, r\right)$ is not convex for $a_{n} \neq 0$ and $n \in \mathbb{N}$.

Proof. The key issue is to check whether or not $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}\left(z^{n}, r\right)$ is convex for $r \in(0,1)$. To see this, let us borrow some symbols from [10]. For $\lambda \geq 0$ and $0<x<1$, we define

$$
f_{\lambda}(x)=\int_{0}^{x} t^{\lambda}(1-t)^{\alpha} d t
$$

and

$$
\Delta(\lambda, x)=\frac{f_{\lambda}^{\prime}(x)}{f_{\lambda}(x)}+x\left(\frac{f_{\lambda}^{\prime}(x)}{f_{\lambda}(x)}\right)^{\prime}-\left[\frac{f_{0}^{\prime}(x)}{f_{0}(x)}+x\left(\frac{f_{0}^{\prime}(x)}{f_{0}(x)}\right)^{\prime}\right] .
$$

Given $n \in \mathbb{N}$. A simple calculation shows $\Phi_{A, \beta}\left(z^{n}, t\right)=\pi^{1-\beta} t^{2(n-\beta)}$, and then a change of variable derives

$$
\mathrm{A}_{\alpha, \beta}\left(z^{n}, r\right)=\frac{\int_{0}^{r} \Phi_{A, \beta}\left(z^{n}, t\right) d \mu_{\alpha}(t)}{v_{\alpha}(r)}=\frac{\pi^{1-\beta} \int_{0}^{r^{2}} t^{n-\beta}(1-t)^{\alpha} d t}{\int_{0}^{r^{2}}(1-t)^{\alpha} d t}=\pi^{1-\beta}\left[\frac{f_{n-\beta}\left(r^{2}\right)}{f_{0}\left(r^{2}\right)}\right] .
$$

In accordance with Lemma 3.1(i)-(ii), it is easy to work out that $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}\left(z^{n}, r\right)$ is convex for $r \in(0,1)$ if and only if $\Delta(n-\beta, x) \geq 0$ for any $x \in(0,1)$.
(i) Under $\alpha \in(-\infty,-3)$, we follow the argument for [10, Proposition 6] to get

$$
\lim _{x \rightarrow 1} \Delta(\lambda, x)=\frac{\lambda(\alpha+1)(\lambda+2+\alpha)}{(\alpha+2)^{2}(\alpha+3)}
$$

Choosing

$$
f(z)=z^{n}= \begin{cases}z, & \text { when } \beta<1 \\ z^{2}, & \text { when } \beta=1\end{cases}
$$

and $\lambda=n-\beta$, we find $\lim _{x \rightarrow 1} \Delta(\lambda, x)<0$, whence deriving that $\log r \mapsto \log A_{\alpha}(f, r)$ is not convex.

In the meantime, picking $n \in \mathbb{N}$ such that $n>\beta-(2+\alpha)$ and putting $g(z)=z^{n}$, we obtain

$$
\lim _{x \rightarrow 1} \Delta(n-\beta, x)=\frac{(n-\beta)(\alpha+1)(n-\beta+2+\alpha)}{(\alpha+2)^{2}(\alpha+3)}>0,
$$

whence deriving that $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(g, r)$ is not concave.
(ii) Under $\alpha \in[-3,0]$, we handle the two situations.

Situation 1: $f \in U(\mathbb{D})$. Upon writing $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, we compute

$$
\Phi_{A, 1}(f(z), t)=\left(\pi t^{2}\right)^{-1} A(f, t)=\sum_{n=0}^{\infty} n\left|a_{n}\right|^{2} t^{2(n-1)}
$$

and consequently,

$$
\mathrm{A}_{\alpha, 1}(f, r)=\frac{\sum_{n=0}^{\infty} n\left|a_{n}\right|^{2} \int_{0}^{r}\left(\pi t^{2}\right)^{-1} A\left(z^{n}, t\right) d \mu_{\alpha}(t)}{v_{\alpha}(r)}=\sum_{n=0}^{\infty} n\left|a_{n}\right|^{2} \mathrm{~A}_{\alpha, 1}\left(z^{n}, r\right) .
$$

So, by Lemma 3.1(iii), we see that the convexity of

$$
\log r \mapsto \log \mathrm{~A}_{\alpha, 1}(f, r) \quad \text { under } f \in U(\mathbb{D})
$$

follows from the convexity of

$$
\log r \mapsto \log \mathrm{~A}_{\alpha, 1}\left(z^{n}, r\right) \quad \text { under } n \in \mathbb{N} .
$$

So, it remains to verify this last convexity via the coming-up-next consideration.
Situation 2: $f(z)=a_{n} z^{n}$ with $a_{n} \neq 0$. Three cases are required to control.
Case 1: $\alpha=0$. An easy computation shows

$$
\mathrm{A}_{0,1}\left(z^{n}, r\right)=n^{-1} r^{2(n-1)}
$$

and so $\log r \mapsto \log \mathrm{~A}_{0,1}\left(z^{n}, r\right)$ is convex.
Case 2: $-2 \leq \alpha<0$. Under this condition, we see from the arguments for [10, Propositions 4-5] that

$$
\Delta(n-1, x) \geq 0, \quad \forall n-1 \geq 0, \quad 0<x<1,
$$

and so that $\log r \mapsto \log \mathrm{~A}_{\alpha, 1}\left(z^{n}, r\right)$ is convex.
Case 3: $-3 \leq \alpha<-2$. With the assumption, we also get from the arguments for [10, Propositions 4-5] that

$$
\Delta(n-1, x) \geq \Delta(-2-\alpha, x)>0, \quad \forall x \in(0,1), \quad n-1 \in[-2-\alpha, \infty),
$$

and so that $\log r \mapsto \log \mathrm{~A}_{\alpha, 1}\left(z^{n}, r\right)$ is convex when $n \geq 2$. Here it is worth noting that the convexity of $\log r \mapsto \log \mathrm{~A}_{\alpha, 1}(z, r)=0$ is trivial.
(iii) Under $0<\alpha<\infty$, from the argument for [10, Proposition 6] we know that $\Delta(n-$ $\beta, x)<0$ as x is sufficiently close to 1 . Thus $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}\left(a_{n} z^{n}, r\right)$ is not convex under $a_{n} \neq 0$.

The following illustrates that the function $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(f, r)$ is not always concave for $\alpha>0,0 \leq \beta \leq 1$, and $f \in U(\mathbb{D})$.

Example 3.1. Let $\alpha=1, \beta \in\{0,1\}$ and $f(z)=z+z^{2} / 2$. Then the function $\log r \mapsto \log \mathrm{~A}_{\alpha, \beta}(f, r)$ is neither convex nor concave for $r \in(0,1)$.

Proof. A direct computation shows

$$
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|=\left|\frac{z^{2}(1+z)}{\left(z+\frac{z^{2}}{2}\right)^{2}}-1\right|=\frac{|z|^{2}}{|z+2|^{2}}<1,
$$

since

$$
|z|<1<2-|z| \leq|z+2|, \quad \forall z \in \mathbb{D} .
$$

So, $f \in U(\mathbb{D})$ owing to Lemma 3.2(i). By $f^{\prime}(z)=z+1$ we have

$$
A(f, t)=\int_{t \mathbb{D}}|z+1|^{2} d A(z)=\pi\left(t^{2}+\frac{t^{4}}{2}\right),
$$

plus

$$
\int_{0}^{r} \Phi_{A, \beta}(f, t) d \mu_{1}(t)= \begin{cases}\frac{\pi}{2}\left(r^{4}-\frac{r^{6}}{3}-\frac{r^{8}}{4}\right), & \text { when } \beta=0 \\ r^{2}-\frac{r^{4}}{4}-\frac{r^{6}}{6}, & \text { when } \beta=1\end{cases}
$$

Meanwhile,

$$
v_{1}(r)=\int_{0}^{r}\left(1-t^{2}\right) d t^{2}=r^{2}-\frac{r^{4}}{2} .
$$

So, we get

$$
\mathrm{A}_{1, \beta}(f, r)= \begin{cases}\frac{\pi\left(12 r^{2}-4 r^{4}-3 r^{6}\right)}{12\left(2-r^{2}\right)}, & \text { when } \beta=0 \\ \frac{12-3 r^{2}-2 r^{4}}{6\left(2-r^{2}\right)}, & \text { when } \beta=1\end{cases}
$$

and in turn consider the logarithmic convexities of the following function

$$
h_{\beta}(x)= \begin{cases}\frac{12 x-4 x^{2}-3 x^{3}}{2-x}, & \text { when } \beta=0 \\ \frac{12-3 x-2 x^{2}}{2-x}, & \text { when } \beta=1\end{cases}
$$

for $x \in(0,1)$.
Using the so-called D-notation in Lemma 3.1, we have

$$
D\left(h_{\beta}(x)\right)= \begin{cases}D\left(12 x-4 x^{2}-3 x^{3}\right)-D(2-x), & \text { when } \beta=0 \\ D\left(12-3 x-2 x^{2}\right)-D(2-x), & \text { when } \beta=1\end{cases}
$$

for $x \in(0,1)$. By an elementary calculation, we get

$$
\left\{\begin{array}{l}
D\left(12 x-4 x^{2}-3 x^{3}\right)=\frac{-48-144 x+12 x^{2}}{\left(12-4 x-3 x^{2}\right)^{2}} \\
D(2-x)=\frac{-2}{(2-x)^{2}} \\
D\left(12-3 x-2 x^{2}\right)=\frac{-36-96 x+6 x^{2}}{\left(12-3 x-2 x^{2}\right)^{2}}
\end{array}\right.
$$

Consequently,

$$
D\left(h_{\beta}(x)\right)= \begin{cases}\frac{2 g_{\beta}(x)}{\left(12-4 x-3 x^{2}\right)^{2}(2-x)^{2}}, & \text { when } \beta=0 \\ \frac{2 g_{\beta}(x)}{\left(12-3 x-2 x^{2}\right)^{2}(2-x)^{2}}, & \text { when } \beta=1\end{cases}
$$

where

$$
g_{\beta}(x)= \begin{cases}48-288 x+232 x^{2}-72 x^{3}+15 x^{4}, & \text { when } \beta=0, \\ 72-192 x+147 x^{2}-48 x^{3}+7 x^{4}, & \text { when } \beta=1 .\end{cases}
$$

Now, under $x \in(0,1)$ we find

$$
g_{0}^{\prime}(x)=-288+464 x-216 x^{2}+60 x^{3} \quad \text { and } \quad g_{0}^{\prime \prime}(x)=464-432 x+180 x^{2}
$$

Clearly, $g_{0}^{\prime \prime}(x)$ is an open-upward parabola with the axis of symmetry $x=6 / 5>1$. By $g_{0}^{\prime \prime}(1)=212>0$ and the monotonicity of $g_{0}^{\prime \prime}$ on $(0,1)$, we have $g_{0}^{\prime \prime}(x)>0$ for all $x \in(0,1)$. Thus g_{0}^{\prime} is increasing on (0,1). The following condition

$$
g_{0}^{\prime}(0)=-288<0 \quad \text { and } \quad g_{0}^{\prime}(1)=20>0
$$

yields an $x_{1} \in(0,1)$ such that $g_{0}^{\prime}(x)<0$ for $x \in\left(0, x_{1}\right)$ and $g_{0}^{\prime}(x)>0$ for $x \in\left(x_{1}, 1\right)$. Since $g_{0}(0)=48$ and $g_{0}(1)=-65$, there exists an $x_{0} \in(0,1)$ such that $g_{0}(x)>0$ for $x \in\left(0, x_{0}\right)$ and $g_{0}(x)<0$ for $x \in\left(x_{0}, 1\right)$. Thus the function $\log x \mapsto \log h_{0}(x)$ is neither convex nor concave.

Similarly, under $x \in(0,1)$ we have

$$
g_{1}^{\prime}(x)=-192+294 x-144 x^{2}+28 x^{3} \quad \text { and } \quad g_{1}^{\prime \prime}(x)=294-288 x+84 x^{2}
$$

Obviously, $g_{1}^{\prime \prime}(x)$ is an open-upward parabola with the axis of symmetry $x=12 / 7>1$. By $g_{1}^{\prime \prime}(1)=90>0$ and the monotonicity of $g_{1}^{\prime \prime}$ on $(0,1)$, we have $g_{1}^{\prime \prime}(x)>0$ for all $x \in(0,1)$. Thus g_{1}^{\prime} is increasing on $(0,1)$. The following condition

$$
g_{1}^{\prime}(0)=-192<0 \quad \text { and } \quad g_{1}^{\prime}(1)=-14<0
$$

yields $g_{1}^{\prime}(x)<0$ for $x \in(0,1)$. Since $g_{1}(0)=72$ and $g_{1}(1)=-14$, there exists an $x_{0} \in(0,1)$ such that $g_{1}(x)>0$ for $x \in\left(0, x_{0}\right)$ and $g_{1}(x)<0$ for $x \in\left(x_{0}, 1\right)$. Thus the function $\log x \mapsto \log h_{1}(x)$ is neither convex nor concave.

3.3 Log-convexity for $\mathrm{L}_{\alpha, \beta}(f, \cdot)$

Analogously, we can establish the expected convexity for the mixed lengths.
Theorem 3.2. Let $0 \leq \beta \leq 1$ and $0<r<1$.
(i) If $\alpha \in(-\infty,-3)$, then there exist two maps $f, g \in H(\mathbb{D})$ such that $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta}(f, r)$ is not convex and $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta}(g, r)$ is not concave.
(ii) If $\alpha \in[-3,0]$, then $\log r \mapsto \log \mathrm{~L}_{\alpha, 1}\left(a_{n} z^{n}, r\right)$ is convex for $a_{n} \neq 0$ with $n \in \mathbb{N}$. Consequently, $\log r \mapsto \log \mathrm{~L}_{\alpha, 1}(f, r)$ is convex for $f \in U(\mathbb{D})$.
(iii) If $\alpha \in(0, \infty)$, then $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta}\left(a_{n} z^{n}, r\right)$ is not convex for $a_{n} \neq 0$ and $n \in \mathbb{N}$.

Proof. The argument is similar to that for Theorem 3.1 except using the following statement for $\alpha \in[-3,0]$-If $f \in U(\mathbb{D})$, then there exists $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ such that g is the square root of the zero-free derivative f^{\prime} on \mathbb{D} and $f^{\prime}(0)=g^{2}(0)$, and hence

$$
\Phi_{L, 1}(f, t)=(2 \pi t)^{-1} \int_{t \mathbb{T}}\left|f^{\prime}(z)\right||d z|=(2 \pi t)^{-1} \int_{t \mathbb{T}}|g(z)|^{2}|d z|=\sum_{n=0}^{\infty}\left|b_{n}\right|^{2} t^{2 n} .
$$

Thus, we complete the proof.
Our concluding example shows that under $0<\alpha<\infty$ and $0 \leq \beta \leq 1$ one cannot get that $\log \mathrm{L}_{\alpha, \beta}(f, r)$ is convex or concave in $\log r$ for all functions $f \in U(\mathbb{D})$.

Example 3.2. Let $\alpha=1, \beta \in\{0,1\}$ and $f(z)=(z+2)^{3}$. Then the function $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta}(f, r)$ is neither convex nor concave for $r \in(0,1)$.

Proof. Clearly, we have

$$
f^{\prime}(z)=3(z+2)^{2} \quad \text { and } \quad f^{\prime \prime}(z)=6(z+2)
$$

as well as the Schwarizian derivative

$$
\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\prime}-\frac{1}{2}\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{2}=\frac{-4}{(z+2)^{2}}
$$

It is easy to see that

$$
\sqrt{2}\left(1-|z|^{2}\right) \leq 2-|z|, \quad \forall z \in \mathbb{D} .
$$

So,

$$
\left|\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\prime}-\frac{1}{2}\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{2}\right|=\frac{4}{|z+2|^{2}} \leq \frac{4}{(2-|z|)^{2}} \leq \frac{2}{\left(1-|z|^{2}\right)^{2}}
$$

By Lemma 3.2(ii), f belongs to $U(\mathbb{D})$. Consequently,

$$
L(f, t)=\int_{0}^{2 \pi}\left|f^{\prime}\left(t e^{i \theta}\right)\right| t d \theta=6 \pi t\left(t^{2}+4\right)
$$

and

$$
\int_{0}^{r} \Phi_{L, \beta}(f, t) d \mu_{1}(t)= \begin{cases}12 \pi\left(\frac{4}{3} r^{3}-\frac{3}{5} r^{5}-\frac{1}{7} r^{7}\right), & \text { when } \beta=0 \\ 12 r^{2}-\frac{9}{2} r^{4}-r^{6}, & \text { when } \beta=1\end{cases}
$$

Note that $v_{1}(r)=r^{2}-r^{4} / 2$. So,

$$
\mathrm{L}_{1, \beta}(f, r)= \begin{cases}\frac{24 \pi\left(140 r-63 r^{3}-15 r^{5}\right)}{105\left(2-r^{2}\right)}, & \text { when } \beta=0 \\ \frac{24-9 r^{2}-2 r^{4}}{2-r^{2}}, & \text { when } \beta=1\end{cases}
$$

To gain our conclusion, we only need to consider the logarithmic convexity of the function

$$
h_{\beta}(x)= \begin{cases}\frac{140 x-63 x^{3}-15 x^{5}}{2-x^{2}}, & \text { when } \beta=0, \\ \frac{24-9 x-2 x^{2}}{2-x}, & \text { when } \beta=1 .\end{cases}
$$

Case 1: $\beta=0$. Applying the definition of D-notation, we obtain

$$
D\left(140 x-63 x^{3}-15 x^{5}\right)=\frac{-35280 x-33600 x^{3}+3780 x^{5}}{\left(140-63 x^{2}-15 x^{4}\right)^{2}}
$$

and

$$
D\left(2-x^{2}\right)=\frac{-8 x}{\left(2-x^{2}\right)^{2}},
$$

whence reaching

$$
D\left(h_{0}(x)\right)=D\left(140 x-63 x^{3}-15 x^{5}\right)-D\left(2-x^{2}\right)=\frac{4 x g_{0}(x)}{\left(140-63 x^{2}-15 x^{4}\right)^{2}\left(2-x^{2}\right)^{2}}
$$

where

$$
g_{0}(x)=3920-33600 x^{2}+28098 x^{4}-8400 x^{6}+1395 x^{8} .
$$

Obviously,

$$
g_{0}(0)=3920>0 \quad \text { and } \quad g_{0}(1)=-8587<0 .
$$

Now letting $s=x^{2}$, we get

$$
g_{0}(x)=G_{0}(s)=3920-33600 s+28098 s^{2}-8400 s^{3}+1395 s^{4}
$$

and

$$
G_{0}^{\prime}(s)=-33600+56196 s-25200 s^{2}+5580 s^{3} \quad \text { and } \quad G_{0}^{\prime \prime}(s)=56196-50400 s+16740 s^{2} .
$$

Since the axis of symmetry of $G_{0}^{\prime \prime}$ is $s=140 / 93>1, G_{0}^{\prime \prime}$ is decreasing on $(0,1)$. Due to $G_{0}^{\prime \prime}(1)=22536>0$, we have $G_{0}^{\prime \prime}(s)>0$ for all $s \in(0,1)$, i.e., $G_{0}^{\prime}(s)$ is increasing on $(0,1)$. By

$$
G_{0}^{\prime}(0)=-33600<0 \quad \text { and } \quad G_{0}^{\prime}(1)=2976>0,
$$

we conclude that there exists an $s_{0} \in(0,1)$ such that $G_{0}^{\prime}(s)<0$ for $s \in\left(0, s_{0}\right)$ and $G_{0}^{\prime}(s)>0$ for $s \in\left(s_{0}, 1\right)$. Then there exists an $x_{0} \in(0,1)$ such that $g_{0}(x)$ is decreasing for $x \in\left(0, x_{0}\right)$ and $g_{0}(x)$ is increasing for $x \in\left(x_{0}, 1\right)$. Thus there exists an $x_{1} \in(0,1)$ such that $g_{0}(x)>0$ for $x \in\left(0, x_{1}\right)$ and $g_{0}(x)<0$ for $x \in\left(x_{1}, 1\right)$. As a result, we find that $\log r \mapsto \log \mathrm{~L}_{\alpha, 0}(f, r)$ is neither concave nor convex.

Case 2: $\beta=1$. Again using the D-notation, we obtain

$$
D\left(24-9 x-2 x^{2}\right)=\frac{-216-192 x+18 x^{2}}{\left(24-9 x-2 x^{2}\right)^{2}}
$$

and

$$
D(2-x)=\frac{-2}{(2-x)^{2}},
$$

whence deriving

$$
D\left(h_{1}(x)\right)=D\left(24-9 x-2 x^{2}\right)-D(2-x)=\frac{2 g_{1}(x)}{\left(24-9 x-2 x^{2}\right)^{2}(2-x)^{2}},
$$

where

$$
g_{1}(x)=144-384 x+297 x^{2}-96 x^{3}+13 x^{4} .
$$

Now we have

$$
g_{1}^{\prime}(x)=-384+594 x-288 x^{2}+52 x^{3} \quad \text { and } \quad g_{1}^{\prime \prime}(x)=594-576 x+156 x^{2} .
$$

Since the axis of symmetry of $g_{1}^{\prime \prime}(x)$ is $x=24 / 13>1, g_{1}^{\prime \prime}(x)$ is decreasing on $(0,1)$. Due to $g_{1}^{\prime \prime}(1)=174>0$, we have $g_{1}^{\prime \prime}(x)>0$ for all $x \in(0,1)$, i.e., $g_{1}^{\prime}(x)$ is increasing on $(0,1)$. By

$$
g_{1}^{\prime}(0)=-384<0 \quad \text { and } \quad g_{1}^{\prime}(1)=-26<0,
$$

we conclude that $g_{1}^{\prime}(x)<0$ for $x \in(0,1)$. Obviously,

$$
g_{1}(0)=144>0 \quad \text { and } \quad g_{1}(1)=-26<0 .
$$

Hence there exists an $x_{0} \in(0,1)$ such that $g_{1}(x)>0$ for $x \in\left(0, x_{0}\right)$ and $g_{1}(x)<0$ for $x \in\left(x_{0}, 1\right)$. Consequently, we find that $\log r \mapsto \log \mathrm{~L}_{\alpha, \beta=1}(f, r)$ is neither concave nor convex.

Acknowledgements

J. Xiao and W. Xu were in part supported by NSERC of Canada and the Finnish Cultural Foundation, respectively.

References

[1] M. H. Al-Abbadi and M. Darus, Angular estimates for certain analytic univalent functions, Int. J. Open Problems Complex Anal., 2 (2010), 212-220.
[2] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini and T. J. Ransford, Area, capacity and diameter versions of Schwarz's Lemma, Conform. Geom. Dyn., 12 (2008), 133-152.
[3] P. L. Duren, Univalent Functions, Springer-Verlag, NewYork, 1983.
[4] P. Järvi, On some function-theoretic extremal problems, Complex Variables Theory Appl., 24 (1994), 267-270.
[5] T. H. Macgregor, Length and area estimates for analytic functions, Michigan Math. J., 11 (1964), 317-320.
[6] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545-551.
[7] M. Nunokawa, On some angular estimates of analytic functions, Math. Japan, 41(2) (1995), 447-452.
[8] G. Pólya and G. Szegö, Problems and Theorems in Analysis, I., Springer, 1978.
[9] C. Wang, J. Xiao and K. Zhu, Logarithmic convexity of area integral means for analytic functions II, arXiv:1308.4881v1.
[10] C. Wang and K. Zhu, Logarithmic convexity of area integral means for analytic functions, Math. Scand., to appear.
[11] J. Xiao and K. Zhu, Volume integral means of holomorphic functions, Proc. Amer. Math. Soc., 139 (2011), 1455-1465.
[12] S. Yamashita, Length estimates for holomorphic functions, Proc. Amer. Math. Soc., 81 (1981), 250-252.

[^0]: *Corresponding author. Email addresses: jxiao@mun.ca (J. Xiao), wen.xu@uef.fi (W. Xu)

