Adv. Appl. Math. Mech., 6 (2014), pp. 135-144.
Published online: 2014-06
Cited by
- BibTex
- RIS
- TXT
In this paper, high-order Discontinuous Galerkin (DG) method is used to solve the two-dimensional Euler equations. A shock-capturing method based on the artificial viscosity technique is employed to handle physical discontinuities. Numerical tests show that the shocks can be captured within one element even on very coarse grids. The thickness of the shocks is dominated by the local mesh size and the local order of the basis functions. In order to obtain better shock resolution, a straightforward $hp$-adaptivity strategy is introduced, which is based on the high-order contribution calculated using hierarchical basis. Numerical results indicate that the $hp$-adaptivity method is easy to implement and better shock resolution can be obtained with smaller local mesh size and higher local order.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2013.m-s1}, url = {http://global-sci.org/intro/article_detail/aamm/9.html} }In this paper, high-order Discontinuous Galerkin (DG) method is used to solve the two-dimensional Euler equations. A shock-capturing method based on the artificial viscosity technique is employed to handle physical discontinuities. Numerical tests show that the shocks can be captured within one element even on very coarse grids. The thickness of the shocks is dominated by the local mesh size and the local order of the basis functions. In order to obtain better shock resolution, a straightforward $hp$-adaptivity strategy is introduced, which is based on the high-order contribution calculated using hierarchical basis. Numerical results indicate that the $hp$-adaptivity method is easy to implement and better shock resolution can be obtained with smaller local mesh size and higher local order.