Cited by
- BibTex
- RIS
- TXT
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order $k\leq 1$ Raviart- Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
}, issn = {2075-1354}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aamm/8367.html} }In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order $k\leq 1$ Raviart- Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.