Cited by
- BibTex
- RIS
- TXT
A meshless method based on the method of fundamental solutions (MFS) is proposed to solve the time-dependent partial differential equations with variable coefficients. The proposed method combines the time discretization and the one-stage MFS for spatial discretization. In contrast to the traditional two-stage process, the one-stage MFS approach is capable of solving a broad spectrum of partial differential equations. The numerical implementation is simple since both closed-form approximate particular solution and fundamental solution are easier to find than the traditional approach. The numerical results show that the one-stage approach is robust and stable.
}, issn = {2075-1354}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aamm/8365.html} }A meshless method based on the method of fundamental solutions (MFS) is proposed to solve the time-dependent partial differential equations with variable coefficients. The proposed method combines the time discretization and the one-stage MFS for spatial discretization. In contrast to the traditional two-stage process, the one-stage MFS approach is capable of solving a broad spectrum of partial differential equations. The numerical implementation is simple since both closed-form approximate particular solution and fundamental solution are easier to find than the traditional approach. The numerical results show that the one-stage approach is robust and stable.