Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the method of fundamental solutions (MFS) for solving exterior Helmholtz problems with high wave-number in axisymmetric domains. Since the coefficient matrix in the linear system resulting from the MFS approximation has a block circulant structure, it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space. Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.13-13S04}, url = {http://global-sci.org/intro/article_detail/aamm/81.html} }In this paper, we investigate the method of fundamental solutions (MFS) for solving exterior Helmholtz problems with high wave-number in axisymmetric domains. Since the coefficient matrix in the linear system resulting from the MFS approximation has a block circulant structure, it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space. Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.