Adv. Appl. Math. Mech., 16 (2024), pp. 1176-1196.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a newly designed fifth-order finite difference well-balanced mapped unequal-sized weighted essentially non-oscillatory (WBMUS-WENO) scheme for simulating the shallow water systems on multi-dimensional structured meshes. We design new non-linear weights and a new mapping function, so that the WBMUS-WENO scheme can maintain fifth-order accuracy with a small $ε$ even nearby the extreme points in smooth regions. The truncation errors of the scheme is smaller and it has better convergence in simulating some steady-state problems. Unlike the traditional well-balanced WENO-XS scheme [29], this new WBMUS-WENO scheme uses three unequal-sized stencils, denotes the linear weights to be any positive numbers on condition that their summation is one. By incorporating a quartic polynomial on the whole big stencil into WENO reconstruction, the WBMUS-WENO scheme is simple and efficient. Extensive examples are performed to testify the exact C-property, absolute convergence property, and good representations of this new WBMUS-WENO scheme.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2022-0228}, url = {http://global-sci.org/intro/article_detail/aamm/23290.html} }In this paper, we propose a newly designed fifth-order finite difference well-balanced mapped unequal-sized weighted essentially non-oscillatory (WBMUS-WENO) scheme for simulating the shallow water systems on multi-dimensional structured meshes. We design new non-linear weights and a new mapping function, so that the WBMUS-WENO scheme can maintain fifth-order accuracy with a small $ε$ even nearby the extreme points in smooth regions. The truncation errors of the scheme is smaller and it has better convergence in simulating some steady-state problems. Unlike the traditional well-balanced WENO-XS scheme [29], this new WBMUS-WENO scheme uses three unequal-sized stencils, denotes the linear weights to be any positive numbers on condition that their summation is one. By incorporating a quartic polynomial on the whole big stencil into WENO reconstruction, the WBMUS-WENO scheme is simple and efficient. Extensive examples are performed to testify the exact C-property, absolute convergence property, and good representations of this new WBMUS-WENO scheme.