arrow
Volume 14, Issue 6
A Mesh Size Scaling Law with Reynolds Number for Large Eddy Simulation in Channel Flow

Jie Yao & C. J. Teo

Adv. Appl. Math. Mech., 14 (2022), pp. 1535-1566.

Published online: 2022-08

Export citation
  • Abstract

In this paper, a scaling law relating the mesh size to the Reynolds number was proposed to ensure consistent results for large eddy simulation (LES) as the Reynolds number was varied. The grid size scaling law was developed by analyzing the length scale of the turbulent motion by using DNS data from the literature. The wall-resolving LES was then applied to a plane channel flow to validate the scaling law. The scaling law was tested at different Reynolds numbers $(Re_τ$ = 395, 590 and 1000), and showed good results compared to direct numerical simulation (DNS) in terms of mean flow and various turbulent statistics. The velocity spectra analysis shows the evidence of the Kolmogorov –5/3 inertial subrange and verifies that the current LES can resolve the bulk of the turbulent kinetic energy by satisfying the grid scaling law. Meanwhile, the near-wall turbulent flow structures can also be well captured. Reasonably accurate predictions can thus be obtained for flows at even higher Reynolds numbers with significantly lower computational costs compared to DNS by applying the mesh scaling law.

  • Keywords

Large eddy simulation (LES), channel flow, turbulent flow, mesh size scaling law.

  • AMS Subject Headings

76F65

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAMM-14-1535, author = {Jie and Yao and and 24264 and and Jie Yao and C. J. and Teo and and 24265 and and C. J. Teo}, title = {A Mesh Size Scaling Law with Reynolds Number for Large Eddy Simulation in Channel Flow}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2022}, volume = {14}, number = {6}, pages = {1535--1566}, abstract = {

In this paper, a scaling law relating the mesh size to the Reynolds number was proposed to ensure consistent results for large eddy simulation (LES) as the Reynolds number was varied. The grid size scaling law was developed by analyzing the length scale of the turbulent motion by using DNS data from the literature. The wall-resolving LES was then applied to a plane channel flow to validate the scaling law. The scaling law was tested at different Reynolds numbers $(Re_τ$ = 395, 590 and 1000), and showed good results compared to direct numerical simulation (DNS) in terms of mean flow and various turbulent statistics. The velocity spectra analysis shows the evidence of the Kolmogorov –5/3 inertial subrange and verifies that the current LES can resolve the bulk of the turbulent kinetic energy by satisfying the grid scaling law. Meanwhile, the near-wall turbulent flow structures can also be well captured. Reasonably accurate predictions can thus be obtained for flows at even higher Reynolds numbers with significantly lower computational costs compared to DNS by applying the mesh scaling law.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2021-0296}, url = {http://global-sci.org/intro/article_detail/aamm/20858.html} }
TY - JOUR T1 - A Mesh Size Scaling Law with Reynolds Number for Large Eddy Simulation in Channel Flow AU - Yao , Jie AU - Teo , C. J. JO - Advances in Applied Mathematics and Mechanics VL - 6 SP - 1535 EP - 1566 PY - 2022 DA - 2022/08 SN - 14 DO - http://doi.org/10.4208/aamm.OA-2021-0296 UR - https://global-sci.org/intro/article_detail/aamm/20858.html KW - Large eddy simulation (LES), channel flow, turbulent flow, mesh size scaling law. AB -

In this paper, a scaling law relating the mesh size to the Reynolds number was proposed to ensure consistent results for large eddy simulation (LES) as the Reynolds number was varied. The grid size scaling law was developed by analyzing the length scale of the turbulent motion by using DNS data from the literature. The wall-resolving LES was then applied to a plane channel flow to validate the scaling law. The scaling law was tested at different Reynolds numbers $(Re_τ$ = 395, 590 and 1000), and showed good results compared to direct numerical simulation (DNS) in terms of mean flow and various turbulent statistics. The velocity spectra analysis shows the evidence of the Kolmogorov –5/3 inertial subrange and verifies that the current LES can resolve the bulk of the turbulent kinetic energy by satisfying the grid scaling law. Meanwhile, the near-wall turbulent flow structures can also be well captured. Reasonably accurate predictions can thus be obtained for flows at even higher Reynolds numbers with significantly lower computational costs compared to DNS by applying the mesh scaling law.

Jie Yao & C. J. Teo. (2022). A Mesh Size Scaling Law with Reynolds Number for Large Eddy Simulation in Channel Flow. Advances in Applied Mathematics and Mechanics. 14 (6). 1535-1566. doi:10.4208/aamm.OA-2021-0296
Copy to clipboard
The citation has been copied to your clipboard