Adv. Appl. Math. Mech., 11 (2019), pp. 241-254.
Published online: 2019-01
Cited by
- BibTex
- RIS
- TXT
This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated $Q_1$ and Crouzeix-Raviart elements of the Stokes eigenvalue problem. The main ingredient is a novel and sharp $L^2$ error estimate of discrete eigenfunctions, and a new error analysis of nonconforming finite element methods.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2018-0061}, url = {http://global-sci.org/intro/article_detail/aamm/12930.html} }This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated $Q_1$ and Crouzeix-Raviart elements of the Stokes eigenvalue problem. The main ingredient is a novel and sharp $L^2$ error estimate of discrete eigenfunctions, and a new error analysis of nonconforming finite element methods.