Cited by
- BibTex
- RIS
- TXT
The theory of a class of spectral methods is extended to Volterra integro-differential equations which contain a weakly singular kernel $(t-s)^{-\mu}$ with $0<\mu<1$. In this work, we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth. We provide a rigorous error analysis for the spectral methods, which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in $L^\infty$-norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.10-m1055}, url = {http://global-sci.org/intro/article_detail/aamm/103.html} }The theory of a class of spectral methods is extended to Volterra integro-differential equations which contain a weakly singular kernel $(t-s)^{-\mu}$ with $0<\mu<1$. In this work, we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth. We provide a rigorous error analysis for the spectral methods, which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in $L^\infty$-norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.